Hall Ticket Number :

R-15

Code: 5G244
|| B.Tech. II Semester Supplementary Examinations April 2023

Linear Control Systems

(Electrical and Electronics Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

Marks CO BL
UNIT-I

1. Find the closed loop transfer function of the given system using block reduction technique.

OR
14M 12
2. Deduce the output C 1 in the given signal flow graph using Mason's gain formula

3. A unity feedback system is characterized by the open loop transfer function $G(s)=10 / s^{*}(0.1 \mathrm{~s}+1)$. Determine the static error constants for the system. Obtain the steady state error when the system is subjected to an input given by the polynomial $r(t)=a_{0}+a_{1}{ }^{*} t+a_{2}{ }^{*} t^{2} / 2$

OR
4. Derive the time domain specifications of a second order system

14M 21
UNIT-III
5. A unity feedback co ntrol system has an open loop transfer function of $\underset{G(s)=K}{\text { unity }} \underset{/ s\left(s^{2}+4 s+3\right)}{\text { feed }}$. Sketch the root locus

OR
6. a) By Routh stability criterion determine the stability of the system represented by characteristics equation $9 S^{5}-20 S^{4}+10 S^{3}-S^{2}-9 S-10=0$. Comment on the location of characteristic equation.

10M 32
b) Define stability of a control system

UNIT-IV

7. Sketch the polar plot for the given transfer function and determine the frequency at which the plot crosses real axis and the corresponding magnitude. $G(S)=1 /\left[S^{2}(1+S)(1+2 S)\right]$.
$14 \mathrm{M} \quad 3 \quad 2$
OR
8. Sketch the Bode plot and find the Phase margin and gain margin for the system $G(S) H(S)=10 S(3+S) / S(S+2)\left(S^{2}+S+2\right)$.

14 M 32
UNIT-V
9. A continuous time system has a transfer function $T(s)=10(s+4) / s^{*}(s+1) *(s+3)$. Construct three different state models for the system and give block diagram representation for each state model.

14 M 42
OR
10. a) What is state transition matrix? State and prove its properties

7M $\quad 4 \quad 1$
b) Derive the expression for transfer function of State Model.

7M $\quad 4 \quad 1$

