	Н	lall Ticket Number :					_
		ode: 5GC41				R-15	
		II B.Tech. II Semester Supplementary Exam	ninatic	ons A	ugu	st 2021	
		Complex Variables and Specie	al Fun		-		
	٨٨	(Common to EEE & ECE .ax. Marks: 70	=)			Time: 3 Hour	ç
		nswer any five full questions by choosing one question fi	rom ec	ach ur	nit (5		

		UNIT–I					
1.	,	Symmetry of Beta function $B(m, n)=B(n, m)$					7M
	b)	Evaluate $\int_{0}^{1} \frac{x^2}{\sqrt{1-x^5}} dx$ in terms of B function					
		$\int_{0}^{5} \sqrt{1-x^{3}}$ OR					7M
2.	a)	Find real and imaginary parts $\cot z$					7M
	b)	Find all the roots of $\sin z = 2$					7M
		UNIT–II					
3.		Determine P such that the function $f(z) = \frac{1}{2} \log(x^2 + y)$	$(r^2) + i T d$	$an^{-1}\left(\frac{1}{2}\right)$	$\left(\frac{bx}{2}\right)$	be an analytic	
		function	,	Ĺ	у)	-	14M
		OR					1-111
4.		Find an analytic function whose real part is $e^{-x} [x \sin y - y]$	$y\cos y$]				14M
		UNIT–III					
5.		Evaluate $\int_{c} (y^2 + 2xy) dx + (x^2 - 2xy) dy$ where c is th	ne boui	ndary	of	he region by	
		$y = x^2$ and $x = y^2$					14M
		OR					1 1101
6.		Expand $Log z$ by Taylor's series about z=1.					14M
		UNIT–IV					
7.	a)	Find the poles and Residues at each pole $\frac{ze^{z}}{(z-1)^{3}}$					
	b)		naluna	mial .	_10	(-7 + 2 - 3 + 1) if	7M
	b)	Use Residue theorem to find the number of zeros of the $ z < 1$	рогупо	mai z	ζ — (5z + 5z + 1	714
		OR					7M
0		Eveluate $\int e^{2z}$ <i>L</i> where <i>c</i> is the circle $ z = 2$					
8.		Evaluate $\int_{c} \frac{e^{2z}}{(z-1)(z-2)} dz$ where c is the circle $ z = 3$					14M
		UNIT–V					
9.		Find the bilinear Transformation which maps the point (-7 OR	1, 0, 1)	into tl	ne po	oints (0, i, 3i).	14M
10.			lines	-0		f	
10.		Find the image of the region in the z-plane between the	inies y	=u ar	iu y	$\frac{2}{2}$	
		Transformation $w = e^z$.					14M

	H	all Ticket Number :											Г
	Сс	ode: 5G345									_	R-15	
		II B.Tech. II Se			-						Augu	ıst 2021	
		,							neory				
	M	(ax. Marks: 70	Electri	cal a	and	Elec	ron	ics E	ngine	ering)		Time: 3 Hour	c
		nswer any five full que	stions b	y ch	oosir	-			on fron	n each	unit (t		-
						****	*****						
					l	UNIT	_I						
1.	a)	Classify the amplifiers				•							7M
	b)	Construct the approxin	nate h-p	aram	eter			CE a	mplifie	?			7M
-						OF							
2.		Discuss the classification of internal resistance		•				•			•	•	
		transistor are: h _{ie} =1K	-								•		
		input resistance R _i , vol	tage gai	n Av,	, Out	put re	esista	ance l	R₀ usin	g exact	analysi	S.	14M
					ι	JNIT	-11						
3.		What are the various	capacit	ance				he p	erforma	ance of	amplif	ier circuits and	14M
		explain one example ir	n detail										14111
						OF	2						
4.	a)	Explain about hybrid- p											7M
	b)	Explain CE short circui	it curren	t gain	1.								7M
					ι	JNIT-	-111						
5.		Draw the circuit diagra	am of v	oltage	e sh	unt fe	eedba	ack a	nd der	ive exp	ression	s for input and	
		output resistance.				0							14M
•	,	list the differences hat		"	at to m	OF		ati /a	faadha	alia			CM
6.	a) b)	List the differences bet Draw different topologi						alive	reeaba	CKS.			6M 8M
	b)	Draw different topologi		Subat		npime	515.						OIVI
					U	INIT-	-IV						
7.		Find the frequency of oscillations.	oscillati	ions	of H	artley	/ 050	illator	circuit	t and o	btain th	ne condition for	14M
		Oscillations.				OF	,						14111
8.		Derive the frequency of	f oscillat	tions	for C			cillato	or usinc	ı B.IT			14M
0.			i ocoma			o pro		omate		, 20.			
					ι	JNIT-	-V						
9.	a)	Define Q-factor and co	•				•						6M
	b)	Explain the operation frequency response	ofas	single	e tur	ned (capa	citanc	e cou	pled ar	nplifier	circuit and its	8M
		requercy response				OF	2						
10.	a)	Differentiate between	push-pi	ıll an	d co			tarv s	symmet	rv conf	iguratio	on of a class B	
	<i>"</i> ,	power amplifier	1 PC					, c	,	,	3		6M
	b)	Derive the expression	for effici	ency	of a	trans	form	er co	upled C	lass A	power a	amplifier	8M

		Hall Ticket Number :								
		Code: 5G241								
		II B.Tech. II Semester Supplementary Examinations August 2021								
		Electrical Machines-II								
	(Electrical and Electronics Engineering)									
	-	Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks) ********								
		UNIT–I								
		Explain the principal of operation of transformer. Derive its e.m. f. equation.								
		OR								
		The No-Load current of a 4400/440V,1- ,50Hz transformer is 0.04A.It consumes power 80 W at no-load when supply is given to LVside and HVside is kept open. Calculate the following :(i)Power factor of no-load current.(ii) Iron loss component of current.(iii) Magnetizing component of current.								
		UNIT-II								
		In a transformer, derive the condition for maximum efficiency and thus find the load current at which the efficiency is maximum.								
	a)	OR Define all day efficiency of a transformer and Why transformers are rated in KVA but not in KW?								
	a) b)	The full load copper loss on the HV side of a 100 kVA, 1100/317V, single phase transformer is								
ı	5)	0.62kW and on the LVside is 0.48kW.Calculate :(i) R_1 and R_2 inohms.ii)The total reactance is 4percent, find X_1 and X_2 in ohms if the reactance is divided in the same proportion as resistance.								
		UNIT-III								
		Draw the Connection diagram of Y-Y and -Y connected three-phase transformer.								
		OR								
		Explain the scott connection of three phase transformer with neat diagram.								
		UNIT-IV								
		A 3-phase induction motor runs at 1440 rpm at full load when supplied power from 50 Hz, 3-phase line. Calculate: (i) The number of poles. (ii) Slip of full load.								
		(iii) Speed of the stator field w.r.t Stator structure and rotor structure.								
		(iv) Speed of the rotor field w.r.t Stator structure and rotor structure.								
		OR								
		From fundamentals, deduce a relationship between Rotor power input, rotor copper loss and mechanical power developed in case of Induction motor.								
		UNIT–V								
ä	a)	Explain no load tests and blocked rotor tests for an 3-phase induction motor.								
	o)	In a no load test, an induction motor took 10 A and 450 W with a line voltage of 110 V. If stator resistance per phase is 0.05 and friction and windage losses amount to 135 W. calculate the exciting conductance and susceptance/ph.								
		OR								
	a)	Briefly explain the working of star delta starter with a neat diagram								
I	b)	A 440V, 3-phase, 8 pole, 50 Hz, 40KW, Star connected induction motor has the following parameters.								
		$R_1 = 0.1$, $X_1 = 0.4$, $R_2 = 0.15$, $X_2 = 0.44$. The stator core loss is 1250W while mechanical loss is 1000W. It draws a no load current of 20A at a p.f of 0.09 Lag. While running at a speed of 727.5 RPM. Calculate (i) Input line current &P.f. (ii) Efficiency of motor. ***								

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

		Hall Ticket Number :								
	C	Code: 5G244								
		II B.Tech. II Semester Supplementary Examinations August 2021 Linear Control Systems (Electrical and Electronics Engineering) Max. Marks: 70 Time: 3 Hou Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks ********	-							
1.	a) b)	UNIT–I Define control system. State the difference between closed loop and open control system with examples Define transfer function. Find the transfer function of closed loop control system OR	7M 7M							
2.	a)	Determine the closed loop transfer function of the given system using block reduction technique. $R(s) + G_1 + G_4 + G_2 + C(s)$ $H_1 + H_2$	8M							
	b)	Describe the block diagram reduction rules with figures.	6M							
	- /									
3.		Derive the time domain specifications of a second order system	14M							
4.	a) b)									
		steady state error.								
			7M							
5.	a)	Define stability, asymptotic stability and relative stability.	7M							
0.	b)									
	- /	OR								
6.		The characteristic polynomial of a system is $s^7+9s^6+24s^5+24s^4+24s^3+24s^2+23s+15=0$. Determine the location of the roots in s-plane and hence stability of the system.	14M							
7.	a)	Derive the frequency domain specifications of a second order system	10M							
	b)	List the advantages and disadvantages of Frequency response	4M							
-		OR OR	4M							
8.	a)									
	b)	Explain the procedure to determine the Gain margin and Phase margin from Polar plot.	10M							
0	2)	UNIT-V Derive the expression for the transfer function of a lag-lead compensator.	6M							
9.	a) b)	Define lag compensator and draw the Pole Zero Plot .Also state it's effects.	8M							
	b)	OR								
10.		The open-loop transfer function of a unity feedback control system is given								
		by $G(s)H(S) = \frac{K}{S(1+0.2S)}$. Design a suitable compensator such that the system will have								
		$Kv=2$ and $PM = 50^{\circ}$	14M							
