	IICK	et Number : R-15	
ode:		244	
II E	3.Te	ch. II Semester Supplementary Examinations Nov/Dec 2018	
		Linear Control Systems	
Vax.	Mai	(Electrical and Electronics Engineering) rks: 70 Time: 3 Hc	ours
		er all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)	/015

1.	a)	UNIT-I What are the important rules of the block diagram reduction techniques?	7
	b)	Explain the necessity and effect of feedback in control system?	71
		OR	
2.	a)	What do you mean by the sensitivity of the control system and discuss the effect	
	b)	of feedback on sensitivity. Derive the transfer function of an armature controlled DC servo motor.	71 71
	~)		/1
3.	a)	Define steady state error and error constants of different types of inputs.	7
	b)	Damping factor and natural frequency of the system are .12 and 84.2 rad/sec	
		respectively. Determine the rise time (t_r) , peak time (t_p) , Maximum peak overshoot (mp) and setting time (t_s)	× 71
		OR	
4.	a)	What is meant by transient response and steady state response? Explain in	
	b)	detail about various time domain specifications. Find the various static error constants for a unity feedback control system	71 ו
	- /	whose open loop transfer function is $G(s) = \frac{10(s+2)}{s^2(s+1)}$	
		$\begin{bmatrix} \mathbf{UNIT}-\mathbf{III} \end{bmatrix}$	7
5.	a)	Explain the effect of adding poles and zeroes to characteristic equation or	۱
	, , ,	stability of the root loci.	4
	b)		
		$G(s) = \frac{k(s^2 - 2s + 2)}{(s + 21)(s + 3)(s + 4)}$	10
		OR	101
6.	a)	How RH criteria can be used to study the relative stability?	71
	b)	Using Routh –Hurwitz criterion, check whether systems represented by the following characteristic equation are stable or not. Comment on the location of	
		the roots. Determine the frequency of the sustained oscillations if any	
		S ³ +20S ² +9S+100=0	7
7.	a)	UNIT-IV Derive the correlation between time domain and frequency domair	h
	u)	specifications.	4
	b)	Sketch the Bode plot Margin for the given system whose $H(s)=1$	
		$G(s) = \frac{1}{s(s+4)(s+2)}$	
		S(S + 4)(S + 2) i. Determine the gain margin	
		ii. Find the phase margin for damping ratio of 0.5	10
8.	a)	OR List the advantages and disadvantages of Frequency response methods.	4
0.	b)	Sketch the polar plot and discuss the stability of the system represented by	4
	,	k	
		$G(s)H(s) = \frac{1}{s(s+1)(s+5)}$	10
•	、	$G(s)H(s) = \frac{k}{s(s+1)(s+5)}$ UNIT-V	
9.	a) b)	Explain the procedure for the design of Lag-Lead compensator.	7
	b)	List the effects and limitations of Phase –Lag control. OR	7
10.	a)	Explain the concept of state, state model, state space.	7
	b)	Write short notes on the following :	-
		i) Controllability and Observability	
		ii) State Transition Matrix	

Hall	Tick	et Number :	
Code		R_15	
		ech. II Semester Supplementary Examinations Nov/Dec 2018	
		Complex Variables & Special Functions	
Max	Ma	(Common to EEE and ECE) rks: 70 Time: 3 Hou	irs
		all five units by choosing one question from each unit (5 x 14 = 70 Marks	

		UNIT–I	
1.	a)	Evaluate $\int_0^1 x^5 \left(\log \frac{1}{x} \right)^3 dx$	7M
	b)	Separate $log sin(x + iy)$ into real and imaginary parts.	7M
2.	a)	OR Drove that $\theta\left(m^{-1}\right) = 2^{2m-1}\theta\left(m^{-1}\right)$	
		Prove that $\beta\left(m, \frac{1}{2}\right) = 2^{2m-1}\beta(m, m)$	7M
	b)	If $cosh(u + iv) = x + iy$ prove that $(i)\frac{x^2}{cosh^2u} + \frac{y^2}{sinh^2v} = 1$ (ii) $\frac{x^2}{cos^2u} - \frac{y^2}{sin^2v} = 1$	7M
3.	2)	$\begin{array}{ c c } \hline \textbf{UNIT-II} \\ \hline (a^2 & a^2) \\ \hline \end{array}$	
5.	a)	If $f(z)$ is a regular function of z, prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) f(z) ^2 = 4 f'(z) ^2$	7M
	b)	Find the analytic function whose real part is $e^{x}{(x^{2} - y^{2})cosy - 2xy siny}$ OR	7M
4.		Find the analytic fuction $f(z) = u + iv$, if $u + v = \frac{2sin2x}{e^{2y} - e^{-2y} - 2cos2x}$	1 4 1 4
		$e^{2y} - e^{-2y} - 2\cos 2x$	14M
5.	a)	Evaluate, using Cauchy's integral formula $\oint_C \frac{\sin^2 z}{\left(z - \frac{\pi}{6}\right)^3} dz$, where <i>C</i> is the circle $ z = 1$	
			7M
	b)	Find the Taylor's expansion of $f(z) = \frac{1}{(z-1)(z+1)}$ about the point $z = 1$	7M
6.	a)	OR Evaluate $\binom{2+3i}{-2}$, $\binom{2}{-2}$,	
0.		Evaluate $\int_{1-i}^{2+3i} (z^2 + z) dz$, along the line joining the points $(1, -1)$ and $(2, 3)$	7M
	b)	Find the Laurents series expansion of $f(z) = \frac{1}{(z-1)(z-2)}$ in the region	714
		1 < z < 2	7M
7.	a)	Evaluate $\oint_C \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)^2(z-2)} dz$, where <i>C</i> is the circle $ z = 3$	714
			7M
	2)	Evaluate $\int_{-\infty}^{\infty} \frac{x^2}{(x^2+1)(x^2+4)} dx$	7M
8.	a)	OR Find the sum of the residues of $f(x) = \frac{\sin x}{2}$ at its pales inside the single $ x = 2$	
0.	⊆, b)	Find the sum of the residues of $f(z) = \frac{sinz}{z \cos z}$ at its poles inside the circle $ z = 2$ Use Rouche's theorem to show that the equation $z^5 + 15z + 1 = 0$ has one root	7M
	5)	in the disc $ z < \frac{3}{2}$ and four roots in the annulus $\frac{3}{2} < z < 2$	7M
			7 101
9.	a)	Find the bilinear transformation which maps the points $z = 1, i, -1$ onto $w = 2, i, -2$	7M
	b)	Prove that the tranformation $w = e^z$	7M
10.	a)	OR Prove that the tranformation $w = sinz$	7M
.0.	b)	Find the bilinear transformation which maps the points $z = i, 1 - 1$ onto $w = 1, 0, \infty$	7M
	,	****	

Hall T	icke	t Number :														
Code:	5G2	42		1			I	1					1		R-15	
II B.Tech. II Semester Supplementary Examinations Nov/Dec 2018																
Electrical Circuits-II																
(Electrical and Electronics Engineering) Max. Marks: 70 Time: 3 Hours																
Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)																
1.	a)	Explain the connected (•	•	tion	of N	/lillm	ann':	s the	eorer	n co	onsid	ering	j a 3-p	oh star	7M
	b)	A delta connected load has a parallel combination of 5 Ω and -j8 Ω impedance in each phase. If a balanced voltage of 100 V (L-L), 3-ph, 50 Hz supply is applied between the lines, find the phase and line currents. Draw the vector														
		diagram.	ween	the	lines	, find	d the	pna	se ai	nd lir	ne cu	irren	ts. D	raw the	vector	7M
		-						O								
2.		With a neat experimenta calculation of	ally u	sing	2-wa	ttme	ter m	netho	•			•				14M
0	-)		: - f	I			L	UNI]	- 4!		le .e ! e		4 m ² 1	
3.	a)	Discuss in I circuit Analy		appi	catic	on or	сар	lace	trans	sioriti	atio	1 tec	nniqi	ue to ei	ectrical	7M
	b)	Obtain the s		respo	onse	of R	-L se	ries	circui	t usi	ng la	place	e trar	nsforms	i.	7M
٨		Evoloin the		orto	~+ f.	un atia		O of l	-	- +r	onof	- r	0.00	d moonti	ion tha	
4.	a)	advantages	as a	pplie	d to	elect	rical	circu	uits.						ion the	7M
	b)	Find the inv	erse	Lapla	ace t	rans				_= -	(s+1	(s+1)	2)(s+	-3)		7M
5.	a)	Obtain the I	D.C.	Trans	sient	resp		UNI ⁻ e of F		_ eries	s circ	uit.				7M
	b)	Enumerate the differences between the circuit analysis of a given R-L-C series						7M								
		-				-		O	र		-					
6.		A second o														
		$2e^{-t}$ Solve							lace	tran	sforn	n su	bject	to the	e initial	
		conditions c	of f(o	$(^{+}) = 2$	2 and	$\frac{d}{d}$	$\frac{b+j}{t} =$	= 0								14M
7					~f T.] 4 E a :		~ ~ " .	-			784
7.	a) b)	Discuss the Obtain the		•		•								= (t+π)	when	7M
	2)	-π <t< and<="" td="" π=""><td></td><th></th><th></th><td></td><td>0 101</td><td></td><td>iane</td><td></td><td>9.70</td><td></td><td>.(()</td><td>((* 11)</td><td>, mion</td><td>7M</td></t<>					0 101		iane		9.70		.(()	((* 11)	, mion	7M
0		A aariaa D I	oiro		ith D	- 10		lo I ba		mL	io ou	hiad	od to		an of v	
8.	a)	A series R-I (t) = $(75+2)$ average power	25 si									•			•	7M
	b)	Discuss the		paris	on b	etwe	en F	ourie		ies a	and L	.apla	ce Ti	ransforr	ns.	7M
9.		An admittar	ice fi	unctio	on is	give	n by	Y(s)	$=\frac{4s^2}{s}$	² +6s +1	Re	alise	the	network	ζ.	14M
10.		Find the firs	t and	sec	ond f	oste	r forr	OI n of		rivinę	g poi	nt im	peda	ance fur	nction	
					Z(s)	$=\frac{2(.1)}{.1}$	$\frac{s^2+1}{s(s^2)}$	$\frac{(s^2)}{(s^2+4)}$	+9)							14M
							**	*								

	На	Hall Ticket Number :		
	Co	Code: 5G345	R-15	
	00	II B.Tech. II Semester Supplementary Examinations Nov/	Dec 2018	
		Electronic Circuit Theory		
		(Electrical & Electronics Engineering)		
		Max. Marks: 70	Time: 3 Hours	
	Ar	Answer all five units by choosing one question from each unit (5 × ******	< 14 = 70 Marks)	
		UNIT–I		
1.	a)	a) Explain the different coupling schemes in Multistage amplifier.		8M
	b)	R_{c2} =4K Ω , R_{e2} =330 Ω with biasing resistances of 1st stage R_1 =200K Ω , R resistances of 2nd stage are R3=47K Ω , R4=4.7K Ω . Find A _I , A _V , R _i and A _{vs}	$_{2}$ =20K Ω and biasing with h-parameters of	
		h_{ie} =1.1K Ω , h_{fe} =50, h_{re} =2.5X10-14 and h_{oe} =25µA/V.		6M
2.	a)	OR a) Explain Cascode amplifier and derive voltage gain.		7M
<u> </u>	b)			7M
	~)			
3.	a)		significance of every	
	,	component in this model?	•	7M
	b)	 Explain the frequency response of amplifier at Low and Mid frequencies. OR 		7M
4.	a)		1	10M
	b)	What is the significance of 3dB bandwidth?		4M
		UNIT–III		
5.	a)	a) Explain the concept of feedback with block diagram.		7M
	b)	b) Briefly discuss about the effect of feedback on amplifier bandwidth.		7M
0	、	OR		
6.	a) h)			8M
	b)			6M
7.	a)	a) What is the condition for oscillations?		4M
7.	b)	,		-111
	5)	$C1=0.018\mu$ F, $C2=0.16\mu$ F. Find the values of feedback fraction, minim		
		oscillations and emitter resistor R _E .	1	10M
		OR		
8.	a)	, , , , , , , , , , , , , , , , , , , ,		10M
	b)	b) A Wein bridge oscillator has a frequency of 400Hz, if the value of C is 10 the value of R.		4M
9.	a)			7M
0.	b)			7 111
	- /	transformer. The supply voltage is 25v, if the number of turns on the prin	mary is 200 and the	
		number of turns on the secondary is 50. Calculate maximum power outpefficiency and maximum dissipation per transistor.		7M
		OR		
10.	a)			4M
	b)	 Explain how the stability is obtained in tuned amplifiers. 	1	10M

Hall	Hall Ticket Number :							
Cod	Code: 5G241 R-15							
	II B.	.Tech. II Semester Supplementary Examinations	Nov/Dec 2018					
		Electrical Machines-II						
		(Electrical & Electronics Engineering)	T					
-		arks: 70 all five units by choosing one question from each uni	Time: 3 Hou t (5 x 14 = 70 Marks					
7 (115		*******		,				
4	UNIT–I							
1.	a) b)			8M				
	D)	voltage of 230 V, at 50 Hz and 50 turns. If the flux del						
		1 Tesla, calculate the net cross-sectional area of the core	,,	6M				
		OR						
2.	a)	51	bes of transformers,	714				
	b)	and give the advantages and disadvantages of each type List out various types of losses. Also explain the effect of	froquonov & cupply	7M				
	D)	voltage on core losses.	nequency & supply	7M				
		UNIT–II						
3.	a)	5 5	expression for the	714				
	b)	voltage regulation A single phase transformer working at unity power factor has	an officiancy of 90%	7M				
	0)	at half load and full load of 500 W. Determine the efficiency at	•	7M				
		OR						
4.	a)	•						
		primary and secondary windings may be combined to give a circuit with the values of constants given in terms of secondar	• •	7M				
	b)		y winding	7M				
	,							
		UNIT–III						
5.	a)	•		7M				
	b)	An ideal 3-phase step down transformer connected in power to a balanced 3-phase load of 120 KVA at 0.8 pf. The state of th						
		is 11 KV and the turn's ratio of transformer (phase to phas						
		the line voltage line currents, phase voltages, phase curre						
		and secondary sides.		7M				
~		OR	upply voltors from					
6.		A three phase transformer is used to step down the s 10000 V to 440 V. If the output capacity of the transform						
		the secondary and primary currents of the transformer	-,	8M				
		With neat phasor diagram, explain the voltage regu	ulation of 3-phase	<u></u>				
		transformer		6M				

Page 2 of 2

UNIT-IV

- 7. a) What are the merits and demerits of the two types (cage and wound, or slipring) of rotors in induction motor?
 - b) A 4-pole, 3-phase, 50 Hz, IM supplies a useful torque of 160 Nm at 5 % slip. Calculate: rotor input, motor input, efficiency if friction & windage losses are 500 W and stator losses are 1000 W.

OR

- 8. a) Discuss about the effects of crawling and cogging on operation of an induction motor
 - b) A 10 KW, 400 V, 3-phase induction motor has full load efficiency of 0.87 and power factor 0.85. At stand still at rated voltage the motor draws 5 times full load current and develops a starting torque of 1.5 times full load torque. An autotransformer is installed to reduce the starting current to give full load torque at the time of starting. Calculate the voltage applied line current.

UNIT–V

- 9. a) Explain the tests to be carried out to draw circle diagram of an induction motor 8M
 - b) Explain the need of starters for starting of a 3 phase induction motor 6M

OR

- 10. a) Explain all the modes of operation of induction machine. Plot the neat characteristics.
 - A 3-phase squirrel cage induction motor has maximum torque equal to thrice the full load torque. Determine the ratio of starting torque to full load torque if started by:

- i. DOL starter.
- ii. Star delta starter.

The maximum torque occurs at 0.1 slip

7M

7M

7M

7M

6M

8M

Hall	Hall Ticket Number :						
Code	· 50	R-15					
Code: 5G243 II B.Tech. II Semester Supplementary Examinations Nov/Dec 2018							
		Generation of Electric Power					
		(Electrical and Electronics Engineering)					
-	-	arks: 70 er all five units by choosing one question from each unit (5 x 14 = 70 Marks)	Urs				
		****** UNIT–I					
1.	a)	Explain the generation of electrical energy.	6M				
	b)	Briefly explain about Turbines, Condensers, Chimney and Cooling Towers.	8M				
		OR					
2.	a)	Draw the complete schematic diagram of a coal fired thermal power plant.					
		Discuss briefly the function of each component.	7M				
	b)	What is mean by calorific value and write the calorific value for different fuels.	7M				
3.	a)	Write the advantages and disadvantages of Hydro power plant.	7M				
	b)	Draw the layout of hydro power station and discuss it's generation	7M				
		OR					
4.	a)	Explain the functions of the following (i) Reservoir (ii) Dam (iii) Spill ways (iv) Penstock (v) Surge tank.	10M				
	b)	Explain the principle of operation of a gas power plant.	4M				
5.	a)	UNIT–III What is a nuclear reactor? Describe briefly various components of a Nuclear reactor.	7M				
	b)	Compare the performance of various materials used as moderator in a nuclear reactor.	7M				
		OR					
6.	a)	Write the advantages and disadvantages of Nuclear Power plant.	5M				
	b)	Write short notes on the following (i) Moderator (ii) Control Rods					
		(iii) Reflectors and coolants.	9M				
7.	a)	UNIT-IV Explain about load curve and load duration curve with one example.	7M				
	b)	The maximum demand of a generating station is 200MW. The annual load	, 101				
	2)	factor being 60%. Calculate the total electrical energy generated per year.	7M				
		OR					
8.	a)	Briefly explain how "Two part tariff" is most justified.	7M				
	b)	A consumer has a maximum demand of 200 KW at 40% load factor. If the					
		tariff is Rs100/- per KW of maximum demand plus 10paise per KWh. Find the					
		overall cost per KWh.	7M				
9.	a)	UNIT-V Explain the role of solar energy in the present scenario.	7M				
5.	b)	Explain the working of horizontal axis wind mill with neat diagram.	7M				
	5)	OR	7 1 1 1				
10.		Briefly explain about (a) Ocean energy (b) Tidal energy (c) Wave energy.	14M				
