Code: 5GC41

II B.Tech. II Semester Supplementary Examinations Nov/Dec 2019

Complex Variables and Special Functions

(Common to EEE \& ECE)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Show that $\beta(m, n)=\frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$
b) If $\cosh (u+i v)=x+i y$, prove that
(i) $\frac{x^{2}}{\cosh ^{2} u}+\frac{y^{2}}{\sinh ^{2} u}=1$
(ii) $\frac{x^{2}}{\cos ^{2} v}-\frac{y^{2}}{\sin ^{2} v}=1$

OR

2. a) Evaluate $\int_{0}^{\infty} e^{-a x} x^{m-1} \sin b x d x$ in terms of Gamma function.
b) Separate the real and imaginary parts of (i) $\sinh (x+i y)$ (ii) $\cosh (x+i y)$

UNIT-II

3. a) Prove that the function $f(z)$ defined by $f(z)=\frac{x^{3}(1+i)-y^{3}(1-i)}{x^{2}+y^{2}}(z \neq 0), f(0)=0$ is continuous and the Cauchy Riemann equations are satisfied at the origin, yet $f^{\prime}(0)$ does not exist.
b) Find the conjugate harmonic of $v(r, \theta)=r^{2} \cos 2 \theta-r \cos \theta+2$. Show that v is harmonic.

OR

4. a) Determine the analytic function

$$
f(z)=u+i v \text { if } u-v=\frac{\cos x+\sin x-e^{-y}}{2(\cos x-\cosh y)} \text { and } f\left(\frac{\pi}{2}\right)=0 .
$$

b) Derive Cauchy-Riemann equations in polar coordinates.

UNIT-III

5. Find the Taylor's expansion of $f(z)=\frac{2 z^{3}+1}{z^{2}+z}$ about the point $z=i$.

OR

6. If $f(z)$ is analytic inside a circle C with centre at a, then for z inside C prove that

$$
f(z)=f(a)+f^{\prime}(a)(z-a)+\frac{f^{\prime \prime}(a)}{2!}(z-a)^{2}+----+\frac{f^{n}(a)}{n!}(z-a)^{n}+----
$$

UNIT-IV

7. a) State and prove Residue theorem.
b) Evaluate $\int_{0}^{\infty} \frac{\cos a x}{x^{2}+1} d x$.

OR

8. a) Find the residue of $f(z)=\frac{z^{2}}{(z-1)^{4}(z-2)(z-3)}$ at its poles and hence evaluate $\int_{C} f(z) d z$ where C is the circle $|z|=2.5$.
b) Show that $\int_{0}^{2 \pi} \frac{\cos 2 \theta}{1-2 a \cos \theta+a^{2}} d \theta=\frac{2 \pi a^{2}}{1-a^{2}},\left(a^{2}<1\right)$

UNIT-V

9. Find the bilinear transformation which maps the points $z=1, i,-1$ onto the points $\mathrm{w}=\mathrm{i}, 0$, -i. Hence find the image of $|z|<1$,

OR
10. Show that the transformation effected by an analytic function $w=f(z)$ is conformal at every point of the Z-plane where $f^{\prime}(z) \neq 0$.

Code: 5G242

|| B.Tech. II Semester Supplementary Examinations Nov/Dec 2019

Electrical Circuits-II

(Electrical and Electronics Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) A symmetrical star connected system has $\mathrm{V}_{\mathrm{RN}}=230 \angle 0^{\circ}$. The phase sequence is RYB. Find $V_{R y}, V_{Y B}, V_{B R}$.

b) The input power to a three-phase load is 10 kW at 0.8 Pf . Two watt meters are connected to measure the power. Find the reading of higher reading wattmeter.

OR

2. a) The three impedances $Z_{1}=20 \angle 30^{\circ}, Z_{2}=40 \angle 60^{\circ}, Z_{3}=10 \angle-90^{\circ}$ are deltaconnected to a $400 \mathrm{~V}, 3-\varnothing$ system. Determine the phase and line currents.
b) A single wattmeter is connected to measure reactive power of a three-phase, threewire balanced load. The line current is 17 A and line voltage is 440 V . Calculate the power factor of the load if the reading of the wattmeter is 4488 VAR.

UNIT-II

3. a) Find the function $f(t)$ in terms of unit step function in the graph shown.

b) If $u(t)=1$ for $t>=0$ and $u(t)=0$ for $t<0$, determine the Laplace transform of $[u(t)-u(t-a)]$.

OR

4. a) Determine the inverse transform of $F(s)=(s+5) / s\left(s^{2}+2 s+5\right)$.
b) The voltage across the resistor in the parallel circuit shown is?

UNIT-III

5. a) A series R-L circuit with $R=30$ and $L=15 \mathrm{H}$ has a constant voltage $\mathrm{V}=60 \mathrm{~V}$ applied at $t=0$ as shown in the figure. Determine the current (A) in the circuit at $t=0+$.

b) In the circuit shown below, the switch is closed at $t=0$, applied voltage is $v(t)=50 \cos (102 t+\pi / 4)$, resistance $R=10$ and capacitance $C=1 \mu F$. The complementary function of the solution of ' i ' is?

OR

6. a) In the circuit shown below, the switch is closed at $t=0$, applied voltage is $v(t)=100 \cos (103 t+\pi / 2)$, resistance $R=20$ and inductance $L=0.1 \mathrm{H}$. The complementary function of the solution of ' i ' is?

b) For the circuit shown below, find the voltage across the capacitor C_{1} at the time the switch is closed.

UNIT-IV

7. a) What is the Fourier cosine series of $f(x)=\pi / 4-x / 2$, where $0<x<\pi$
b) The function f is defined by $f(x)=e^{x}$ for $-L<x<L$. Find its Fourier series.

OR

8. a) Compute the Fourier transform of the signal

$$
\begin{aligned}
& x(t)=\sum_{k=-\infty}^{\infty} f(t+2 k), \text { where } \\
& f(t)=\left\{\begin{array}{ccc}
t+1, & \text { for }-1 \leq t<0 \\
1-t, & \text { for } & 0 \leq t<1 \\
0, & \text { else }
\end{array}\right.
\end{aligned}
$$

b) Compute the Fourier transform of the signal $x(t)=e-^{t} u(t)$.

UNIT-V

9. a) In the circuit shown below, find the Z-parameter $Z_{11}, Z_{12}, Z_{21}, Z_{22}$.

b) Obtain the transfer function $\mathrm{G}_{21}(\mathrm{~S})$ in the circuit shown below.

OR

10. a) Consider the impedance function $Z(s)=3(s+2)(s+4) /(s+1)(s+3)$. Find the value of $\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{C}_{1}, \mathrm{C}_{2}$ and R_{∞} after realizing by first Foster method.
b) Consider the polynomial $P(s)=s^{4}+3 s^{2}+2$. Check whether the given polynomial $P(s)$ is Hurwitz or not. 7M
\square
Hall Ticket Number :
II B.Tech. II Semester Supplementary Examinations Nov/Dec 2019
Electronic Circuit Theory
(Electrical and Electronics Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Draw the small-signal model of an Emitter-Follower ,determine $\mathrm{R}_{\mathrm{i}}, \mathrm{R}_{0}$ and show that the voltage gain is close to unity
b) For a CE Amplifier, the biasing resistors $\mathrm{R}_{1}=47 \mathrm{~K}, \mathrm{R}_{2}=10 \mathrm{~K}, \mathrm{R}_{\mathrm{E}}=470$, $\mathrm{R}_{\mathrm{c}}=2.2 \mathrm{~K}$ and $\mathrm{V}_{\mathrm{cc}}=12 \mathrm{~V}$. The small-signal parameters are $\mathrm{h}_{\mathrm{ie}}=1.17 \mathrm{~K}$, $\mathrm{h}_{\mathrm{oe}}=2 \mu \mathrm{~A} / \mathrm{V}$, $\mathrm{h}_{\mathrm{fe}}=120$. Determine the input and output impedance, Voltage gain and current gain.

OR

2. a) Sketch the circuit of a CS Amplifier. Derive Z_{i}, Z_{o} and A_{v}
b) Compare the three different coupling schemes used in amplifiers.

UNIT-II

3. Draw Hybrid - π model for a transistor in the CE configuration and Derive all components in terms of h parameters.

OR

4. a) Prove that in PNP transistor operating in the active region, the diffusion capacitance $C_{D E}$ at emitter junction J_{E} equals to $\mathrm{W}^{2} . g m / 2 D_{B}$
b) Obtain the expression for short circuit current gain of CE amplifier
UNIT-III
5. a) Describe the four types of feedback topologies.
b) What is the relationship between the transfer gain with feedback A_{f} and without feedback A?
OR
6. a) Draw the circuit of a voltage-Shunt Amplifier and derive the expressions for input and output resistance.
b) Define the term feedback factor β and amount of feedback. 6 M
UNIT-IV
7. a) Explain the Barkhausen criterion for sinusoidal oscillations to be sustained.
b) Explain the operation of Hartley oscillator and obtain the expression for frequency and
condition for sustained oscillations.
8 M

OR

8. a) What are the factors that affect the stability of an oscillator? How Frequency stability can be improved in oscillations.

UNIT-V

9. a) Differentiate between push-pull and complementary symmetry configuration of a class B power amplifier
b) Derive the expression for efficiency of a transformer coupled Class A power amplifier 8 M
OR
10. a) Define Q -factor and compare various tuned amplifiers.
b) Explain the operation of a single tuned capacitance coupled amplifier circuit and its frequency response

Hall Ticket Number :
Code: 5G241
I| B.Tech. II Semester Supplementary Examinations Nov/Dec 2019
Electrical Machines-II
(Electrical and Electronics Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Define a transformer? Why the transformer core is laminated?
b) An $1100 / 400 \mathrm{~V}, 50 \mathrm{~Hz}$ single phase transformer has 100 turns on the secondary winding. Calculate the number of turns on its primary, transformation ratio and turns ratio.

OR

2. A single phase 50 Hz transformer has 440 turns on the primary and 110 turns on the secondary winding takes a no-load current of 5 A at 0.2 power factor lagging. If the secondary supplies a current of 120 A at a power factor of 0.8 lagging. Estimate the current taken by the primary. Take secondary voltage as reference.

UNIT-II

3. a) Define all day efficiency of a transformer and Why transformers are rated in KVA but not in KW?
b) The full load copper loss on the HV side of a $100 \mathrm{kVA}, 1100 / 317 \mathrm{~V}$, single phase transformer is 0.62 kW and on the LVside is 0.48 kW .Calculate :(i) R_{1} and R2inohms.ii)The total reactance is 4percent, find X_{1} and X_{2} in ohms if the reactance is divided in the same proportion as resistance.

OR

4. The performance of $500 \mathrm{KVA}, 10 \mathrm{KV} / 500 \mathrm{~V}, 50 \mathrm{HZ}$ transformer is as follows: when working at UPF has an efficiency of 98% at full-load and also at half -load, and 2.5% regulation at full load 0.8 lag pf. Calculate (i) The efficiency at $3 / 4$ th full load, 0.8 lagp.f (ii) Maximum efficiency ay 0.8 lag pf (iii) Regulation at full load UPF (iv) Regulation at $1 / 2$ full load 0.6 Lead pf.

UNIT-III

5. Explain the scott connection of three phase transformer with neat diagram.

OR
6. Two identical transformers each of rating $5 \mathrm{KVA}, 200 \mathrm{~V} / 100 \mathrm{~V}, 50 \mathrm{~Hz}$ transformers are connected in open delta. Calculate the KVA rating of the open delta bank when HV side is used as primary.

UNIT-IV

7. a) Explain the principle of operation of Induction motor.
b) A 4 pole, 3-phase induction motor operates from a supply whose frequency is 50 Hz . Calculate.
i. the speed at which the magnetic field of the stator is rotating.
ii. the speed of the rotor when the slip is 0.04
iii. the frequency of the rotor currents when the slip is 0.03
iv. the frequency of the rotor currents at standstill.

OR

8. a) Describe the constructional details of cage and wound rotor induction machines.
b) A 3-phase induction motor runs at 1440 rpm at full load when supplied power from 50 Hz , 3-phase line. Calculate: (i) The number of poles. (ii) Slip of full load.
(iii) Speed of the stator field w.r.t Stator structure and rotor structure.
(iv) Speed of the rotor field w.r.t Stator structure and rotor structure.

UNIT-V

9. a) Explain no load tests and blocked rotor tests for an 3-phase induction motor.
b) In a no load test, an induction motor took 10 A and 450 W with a line voltage of 110 V . If stator resistance per phase is 0.05 and friction and windage losses amount to 135 W . calculate the exciting conductance and susceptance/ph.

OR
10. a) List out the types of starters used for starting of 3 - phase induction motors. Explain line starting of an induction motor.
b) A 3-phase cage induction motor has a short circuit current equal to 5 times the full load current. Find the starting torque as the \% of full load torque, if the motor is started by (i) DOL starter (ii) Star-Delta starter (iii) an Auto Transformer starter with X\% tapping. Starting Current in (iii) is to be limited to 2.5 times the full load current. Full load slip is 4%.

Hall Ticket Number : \square
Code: 5G243
|| B.Tech. |l Semester Supplementary Examinations Nov/Dec 2019

Generation of Electric Power

(Electrical and Electronics Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. Write a short note on Boiling Water reactor and also write the advantages and disadvantages.

OR

2. a) Explain about the growth of power systems in India?
b) What is the function of electrostatic precipitator used in the chimney of a thermal power station? Explain

UNIT-II

3. Draw a neat schematic diagram of a hydroelectric plant and write the functions of various components.

OR

4. a) Explain the working of a gas power plant with a schematic diagram
b) Explain the functions of the following
(i) Reservoir
(ii) Surge tank
(iii) Spill ways

UNIT-III

5. Explain the basic components of a nuclear reactor with a neat diagram.
OR
6. What are merits and demerits of Nuclear Power Plants?

UNIT-IV

7. a) Discuss the objectives and requirement of tariff methods
b) Define average load, maximum demand, load factor, diversity factor, plant use factor, load duration curve?

OR

8. Explain two part tariff and compare it with power factor tariff.

UNIT-V

9. What is biomass? What are the different sources used to extract biomass energy? OR
10. Explain different types of Non- Conventional sources of energy?

II B.Tech. II Semester Supplementary Examinations Nov/Dec 2019

Linear Control Systems

(Electrical and Electronics Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks) ******

UNIT-I

1. Deduce the block diagram of the given signal flow graph. Also find the transfer function using Mason's gain formula

OR
2. For the mechanical system shown below, derive the transfer function. Also draw the force-voltage and force-current analogous circuits.

UNIT-II
3. Obtain the ie of an unity feedback system whose open loop transfer
 time, peak time, settling time and peak over shoot

OR
4. Derive the response of under damped second order system with unit ramp input

UNIT-III

5. a) By Routh stability criterion determine the stability of the system represented by characteristics equation $9 s^{5}-20 s^{4}+10 s^{3}-s^{2}-9 s-10=0$. Comment on the location of characteristic equation.
b) Define : Asymptotic stability; BIBO stability

OR

6. A unity feedback system has an open loop transfer function

$$
G(s)=\frac{-\frac{K}{s\left(s^{2}\right.} \frac{K}{+s+12)}}{}
$$

Sketch the root locus and determine the dominant closed loop poles with $\bar{\delta}=0.5$
Determine the value of K at th $_{\text {is point. }}$
UNIT-IV
7. The ope loop transfer function of a unity feedback system is given by $\left.G(s)=\frac{1}{s(1+s)}\right)^{2}$. Sketch the polar plot. Determine gain margin and phase margin

OR
8. Derive the frequency domain specifications of a second order system

UNIT-V

9. A unity feedback system has an open loop transfer function of $\quad G(s)=\frac{\kappa}{s(2 s+1)}$. Design a suitable lag compensator so that the phase margin is 40° and steady state error for ramp input is less than or equal to 0.2

OR
10. a) Compute state transition matrix e^{At} where $A=\left[\begin{array}{lr}0 & 1 \\ -2 & -3\end{array}\right]$
b) Find the eigen values of the matrix given below: $A=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6\end{array}\right]$

