	kat Numbar i							
	ket Number :						R-15	7
Code: :		mostor Sup	nlomontar	, Evamin	ations			
I	I B.Tech. II Se Co	mplex Var	•				ec 2019	
		-	ommon to E	-				
	Aarks: 70 swer all five uni	its by choosin	g one questic	on from ea	ach unit	(5 x 14	Time: 3 Hours = 70 Marks)	
			UNIT–	I				
1. a) Show that s	$S(m,n) = \frac{\Gamma(m)I}{\Gamma(m-1)}$	$\frac{\Gamma(n)}{(n+n)}$					7M
t) If cosh(u + iv	/) = x + iy, prov	ve that					
	(i) $\frac{x^2}{\cosh^2 u}$	$+\frac{y^2}{\sinh^2 u}=1$ ($ii) \frac{x^2}{\cos^2 v} - \frac{y^2}{\sin^2}$	$\frac{1}{v} = 1$				7M
			OF	8				
2. a) Evaluate $\int_{0}^{\infty} e^{-1}$	$x^{m-1}\sin bxdx$ i	n terms of Gar	nma functi	on.			7M
b) Separate the	e real and imag	inary parts of	(i) $\sinh(x + $	<i>iy</i>)(ii) c	$\cosh(x+iy)$)	7M
			UNIT-I	I				
3. a) Prove that th	te function $f(z)$	z) defined by f	$f(z) = \frac{x^3(1-z)}{z^3(1-z)}$	$\frac{(i) - y^3}{x^2 + y^2}$	$\frac{1-i}{2}(z \neq z)$	0), f(0) = 0 is	
		and the Cauchy	/ Riemann equ	ations are	satisfied	l at the or	rigin, yet	
	f'ig(0ig)does n	ot exist.						7M
b) Find the conj	jugate harmon	ic of $v(r, ,) = r$	$r^2 \cos 2_{\prime\prime} - r$	$\cos (+2)$. Show th	at <i>v</i> is	
	harmonic.							7M
			OF	8				
4. a		ne analytic fund		(\mathbf{r})				
	f(z) = u + iv	$if \ u - v = \frac{\cos x + 1}{2(\cos x)}$	$\frac{-\sin x - e^{-y}}{x - \cosh y}$ and	$f\left(\frac{f}{2}\right) = 0$	•			7M
b) Derive Cauc	hy-Riemann eo	quations in pol	ar coordina	ates.			7M
			UNIT–I					
5.	Find the Tay	lor's expansior	n of $f(z) = \frac{2z^3}{z^2}$	$\frac{+1}{+z}$ about	the poin	t z = i.		14M

- 6. If f(z) is analytic inside a circle *C* with centre at *a*, then for z inside *C* prove that

$$f(z) = f(a) + f'(a)(z-a) + \frac{f''(a)}{2!}(z-a)^2 + \dots + \frac{f^n(a)}{n!}(z-a)^n + \dots + \frac{f^n(a)}{n!}(z-a)^$$

OR

Code: 5GC41

7.	a)	State and prove Residue theorem.	7M
	b)	Evaluate $\int_{0}^{\infty} \frac{\cos ax}{x^2 + 1} dx$.	7M
		OR	
8.	a)	Find the residue of $f(z) = \frac{z^2}{(z-1)^4(z-2)(z-3)}$ at its poles and hence evaluate	
		$\int_{C} f(z) dz$ where <i>C</i> is the circle $ z = 2.5$.	7M
	b)	Show that $\int_0^{2f} \frac{\cos 2_{\#}}{1 - 2a\cos_{\#} + a^2} d_{\#} = \frac{2f a^2}{1 - a^2}, (a^2 < 1)$	7M
		UNIT–V	
9.		Find the bilinear transformation which maps the points $z = 1$, i, -1 onto the points	
		w = i, 0, -i. Hence find the image of $ z < 1$,	14M
		OR	

UNIT–IV

Show that the transformation effected by an analytic function w = f(z) is 10. conformal at every point of the Z-plane where $f'(z) \neq 0$. 14M

-

Hall Ticket Number :						
						R-15

Code: 5G242

II B.Tech. II Semester Supplementary Examinations Nov/Dec 2019

Electrical Circuits-II

(Electrical and Electronics Engineering)

Max. Marks: 70

Time: 3 Hours

Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)

1. a) A symmetrical star connected system has $V_{RN} = 230 \ge 0$. The phase sequence is RYB. Find V_{RY} , V_{YB} , V_{BR} .

7M

b) The input power to a three-phase load is 10kW at 0.8 Pf. Two watt meters are connected to measure the power. Find the reading of higher reading wattmeter.
 7M

OR

2. a) The three impedances $Z_1 = 20 \angle 30$, $Z_2 = 40 \angle 60$, $Z_3 = 10 \angle -90$ are deltaconnected to a 400V, $3 - \emptyset$ system. Determine the phase and line currents. 7M

b) A single wattmeter is connected to measure reactive power of a three-phase, three-wire balanced load. The line current is 17A and line voltage is 440V. Calculate the power factor of the load if the reading of the wattmeter is 4488 VAR.

UNIT–II

3. a) Find the function f (t) in terms of unit step function in the graph shown.

7M

b) If u (t) = 1 for t >= 0 and u (t) = 0 for t < 0, determine the Laplace transform of [u (t) - u (t - a)]. 7M

OR

- 4. a) Determine the inverse transform of F (s) = $(s+5)/s(s^2+2s+5)$. 7M
 - b) The voltage across the resistor in the parallel circuit shown is?

7M

7M

UNIT-III

5. a) A series R-L circuit with R=30 and L=15H has a constant voltage V = 60V applied at t = 0 as shown in the figure. Determine the current (A) in the circuit at t = 0+.

b) In the circuit shown below, the switch is closed at t = 0, applied voltage is v(t)=50cos (102t+ /4), resistance R = 10 and capacitance $C = 1\mu F$. The complementary function of the solution of 'i' is?

a) In the circuit shown below, the switch is closed at t = 0, applied voltage is $v(t)=100\cos(103t+/2)$, resistance R = 20 and inductance L = 0.1H. The complementary function of the solution of 'i' is?

6.

7M

b) For the circuit shown below, find the voltage across the capacitor C₁ at the time the switch is closed.

7M

UNIT–IV

- 7. a) What is the Fourier cosine series of $f(x) = \frac{4 x}{2}$, where 0 < x < 7M
 - b) The function f is defined by $f(x) = e^x$ for -L < x < L. Find its Fourier series. 7M

OR

8. a) Compute the Fourier transform of the signal

$$x(t) = \sum_{k=-\infty}^{\infty} f(t+2k), where$$

$$f(t) = \begin{cases} t+1, & for & -1 \le t < 0 \\ 1-t, & for & 0 \le t < 1 \\ 0, & else \end{cases}$$
7M

b) Compute the Fourier transform of the signal $x(t) = e^{-t} u(t)$.

UNIT–V

9. a) In the circuit shown below, find the Z-parameter Z_{11} , Z_{12} , Z_{21} , Z_{22} .

b) Obtain the transfer function G_{21} (S) in the circuit shown below.

7M

7M

10. a) Consider the impedance function Z(s)=3(s+2)(s+4)/(s+1)(s+3). Find the value of R₁, R₂, C₁, C₂ and R after realizing by first Foster method.
b) Consider the polynomial P(s)=s⁴+3s²+2. Check whether the given polynomial P (s) is Hurwitz or not.
7M

	Hall	Ticket Number :	
C	Code	e: 5G345	
		II B.Tech. II Semester Supplementary Examinations Nov/Dec 2019	
		Electronic Circuit Theory	
	Мах	(Electrical and Electronics Engineering) A. Marks: 70 Time: 3 Hours	
		Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)	
		UNIT-I	
1.	a)	Draw the small-signal model of an Emitter-Follower , determine R_i, R_o and show that the voltage gain is close to unity	8M
	b)	For a CE Amplifier, the biasing resistors R_1 =47K , R_2 =10K , R_E =470 , R_C =2.2K and V_{CC} =12V. The small-signal parameters are h_{ie} =1.17K , h_{oe} =2 μ A/V, h_{fe} =120.	
		Determine the input and output impedance, Voltage gain and current gain.	6M
		OR	
2.	a)	Sketch the circuit of a CS Amplifier. Derive Z_i , Z_o and A_v .	8M
	b)	Compare the three different coupling schemes used in amplifiers. UNIT-II	6M
3.		Draw Hybrid - model for a transistor in the CE configuration and Derive all	
		components in terms of h parameters.	14M
4.	a)	Prove that in PNP transistor operating in the active region, the diffusion capacitance C_{DE} at emitter junction J_E equals to W^2 .gm/2D _B	8M
	b)	Obtain the expression for short circuit current gain of CE amplifier	
		UNIT-III	6M
5.	a)	Describe the four types of feedback topologies.	7M
	b)	What is the relationship between the transfer gain with feedback A _f and without feedback A?	7M
6.	a)	OR Draw the circuit of a voltage-Shunt Amplifier and derive the expressions for input and	
0.	,	output resistance.	8M
	b)	Define the term feedback factor and amount of feedback.	6M
7.	2)	UNIT-IV Explain the Barkhausen criterion for sinusoidal oscillations to be sustained.	6M
7.	a) b)	Explain the operation of Hartley oscillator and obtain the expression for frequency and	OW
	0)	condition for sustained oscillations.	8M
		OR	
8.	a)	What are the factors that affect the stability of an oscillator? How Frequency stability can be improved in oscillations.	6M
	b)	For a Colpitts oscillator with C ₁ =1nF, C ₂ =99nF, L=1.5mH, L _{RFC} =0.5mH, C _c =10 μ F, h _{fe} =110.	0 m
	,	Calculate the frequency of oscillations and predict the condition for sustained oscillations.	8M
		UNIT-V	
9.	a)	Differentiate between push-pull and complementary symmetry configuration of a class B power amplifier	6M
	b)	Derive the expression for efficiency of a transformer coupled Class A power amplifier OR	8M
10.	a)	Define Q-factor and compare various tuned amplifiers.	8M
	b)	Explain the operation of a single tuned capacitance coupled amplifier circuit and its	
		frequency response	6M

-												
	Hall	Ticket Number :										
<u> </u>	`oda	e: 5G241			<u> </u>					1]	R-1	5
C	Juc	II B.Tech. II Se	meste	≥r Sun	nlerr	henta	rv Ex	amir	natic	ns N	$\Delta v/Dec 2019$	
		II D.ICCII. II 30	mesit	•	•	al Mo	,				0070002017	
			(Flec	trical (-			ina)		
	Мах	. Marks: 70	1 2100	mean				Lingii		91	Time: 3	Hours
		Answer all five uni	ts by c	hoosing	g one	e quest ******		om eo	ach	unit (
					ι	JNIT-I						
•	a)	Define a transform	mer? V	Vhy the	trans	former	core	is lam	inate	ed?		81
	b)	An 1100/400 V, winding. Calculat		•	•							•
		ratio.										61
						OR						
2		A single phase 5 secondary windir secondary suppli current taken by	ng take es a c	es a no urrent o	-load of1 20	curren)A at a	t of 5 powe	A at o er fac	0.2 p tor o	ower f 0.8 I	factor lagging. lagging. Estimat	If the
					U	INIT-II						
3.	a)	Define all day eff not in KW?	iciency	of a tr	ansfo	rmer a	nd Wr	ny tra	nsfor	mers	are rated in KV	A but 7I
	b)	The full load cop transformer is R₂inohms.ii)The t	0.62kV	V and	on	the L'	Vside	is ().48k	w.Ca	alculate :(i) R ₁	and
		divided in the sar	ne pro	oortion	as res	sistanc	e.					71
						OR						
1.		The performance										

1.

2.

3.

5.

4. working at UPF has an efficiency of 98% at full-load and also at half -load, and 2.5% regulation at full load 0.8 lag pf. Calculate (i) The efficiency at ³/₄ th full load, 0.8 lagp.f (ii) Maximum efficiency ay 0.8 lag pf (iii) Regulation at full load UPF (iv) Regulation at 1/2 full load 0.6 Lead pf.

UNIT-III

- Explain the scott connection of three phase transformer with neat diagram.
- 6. Two identical transformers each of rating 5 KVA, 200 V/100 V, 50 Hz transformers are connected in open delta. Calculate the KVA rating of the open delta bank when HV side is used as primary.

OR

14M

		UNIT–IV	
7.	a)	Explain the principle of operation of Induction motor.	7M
	b)	A 4 pole, 3-phase induction motor operates from a supply whose frequency is 50Hz. Calculate.	
		i. the speed at which the magnetic field of the stator is rotating.	
		ii. the speed of the rotor when the slip is 0.04	
		iii. the frequency of the rotor currents when the slip is 0.03	
		iv. the frequency of the rotor currents at standstill.	7M
		OR	
8.	a)	Describe the constructional details of cage and wound rotor induction machines.	7M
	b)	A 3-phase induction motor runs at 1440 rpm at full load when supplied power from 50Hz, 3-phase line. Calculate: (i) The number of poles. (ii) Slip of full load.	
		(iii) Speed of the stator field w.r.t Stator structure and rotor structure.	
		(iv) Speed of the rotor field w.r.t Stator structure and rotor structure.	7M
9.	a)	UNIT-V Explain no load tests and blocked rotor tests for an 3-phase induction motor.	7M
	b)	In a no load test, an induction motor took 10 A and 450 W with a line voltage of 110V. If stator resistance per phase is 0.05 and friction and windage losses amount to 135 W. calculate the exciting conductance and susceptance/ph.	7M
		OR	
10.	a)	List out the types of starters used for starting of 3 – phase induction motors. Explain	

- a) List out the types of starters used for starting of 3 phase induction motors. Explain line starting of an induction motor.
 - b) A 3-phase cage induction motor has a short circuit current equal to 5 times the full load current. Find the starting torque as the % of full load torque, if the motor is started by (i) DOL starter (ii) Star-Delta starter (iii) an Auto Transformer starter with X% tapping . Starting Current in (iii) is to be limited to 2.5 times the full load current. Full load slip is 4%.

7M

	Hall	Ticket Number :
(e: 5G243
·	Max	II B.Tech. II Semester Supplementary Examinations Nov/Dec 2019 Generation of Electric Power (Electrical and Electronics Engineering) K. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks) ********
1.		UNIT-I Write a short note on Boiling Water reactor and also write the advantages and disadvantages.
2.	a)	OR Explain about the growth of power systems in India?
	b)	What is the function of electrostatic precipitator used in the chimney of a thermal power station? Explain
3.		UNIT-II Draw a neat schematic diagram of a hydroelectric plant and write the functions of various components. OR
4.	a)	Explain the working of a gas power plant with a schematic diagram
	b)	Explain the functions of the following (i) Reservoir (ii) Surge tank (iii) Spill ways
5.		Explain the basic components of a nuclear reactor with a neat diagram.
6.		What are merits and demerits of Nuclear Power Plants?
7.	a)	Discuss the objectives and requirement of tariff methods
	b)	Define average load, maximum demand, load factor, diversity factor, plant use factor, load duration curve?
		OR
8.		Explain two part tariff and compare it with power factor tariff.
9.		UNIT-V What is biomass? What are the different sources used to extract biomass energy?

OR

10. Explain different types of Non- Conventional sources of energy?

naii	Tick	et Number :	
ode:	5G2	P44 R-15	
ouc.		B.Tech. II Semester Supplementary Examinations Nov/Dec 2019	
		Linear Control Systems	
May	· • • •	(Electrical and Electronics Engineering) arks: 70 Time: 3 Ho	
		ver all five units by choosing one question from each unit (5 x 14 = 70 Marks)	
1.		UNIT–I Deduce the block diagram of the given signal flow graph. Also find the transfer	
		function using Mason's gain formula	
		Gris Giz	
		R(S) G11 G12 G13 G4 G5 C(S)	
		-4,	
		-H ₂	14
_		OR	
2.		For the mechanical system shown below, derive the transfer function. Also draw the force-voltage and force-current analogous circuits.	
		$f(t) \rightarrow K_1 \rightarrow K_2 \rightarrow K_2$	
		$ \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	
		And a second sec	
		B ₁ B ₂	141
3.		Obtain the se of an unity feedback system whose open loop transfer	
		functions is $\frac{\operatorname{respons}}{G(s)} = \frac{4}{s(s+5)}$. The system is subjected to unit step input. Find the rise	
		time, peak time, settling time and peak over shoot	14
		OR	
4.		Derive the response of under damped second order system with unit ramp input UNIT-III	141
5.	a)	By Routh stability criterion determine the stability of the system represented by	
		characteristics equation $9s^5 - 20s^4 + 10s^3 - s^2 - 9s - 10 = 0$. Comment on the location of	
		characteristic equation.	10
	b)	Define : Asymptotic stability; BIBO stability OR	41
6.		A unity feedback system has an open loop transfer function $G(s) = \frac{K}{s(s^2 + s + 12)}$	
		$G(s) = \overline{s(s^2 + s + 12)}$ Sketch the root locus and determine the dominant closed loop poles with $ = 0.5$	
		Determine the value of K at this point.	14
		UNIT-IV	
7.		In loop transfer function of a unity feedback system is given by	
		$G(s) = \frac{1}{s(1+s)^2}$. Sketch the polar plot. Determine gain margin and phase margin	14
-		OR	
8.		Derive the frequency domain specifications of a second order system UNIT-V	14
9.		em	
		A unity reedback system has an open loop transfer function of $G(s) = \frac{k}{s(2s+1)}$. Design a suitable lag compensator so that the phase margin is 40° and steady	
		state error for ramp input is less than or equal to 0.2	14
		OR	
10.	a)	Compute state transition matrix e^{At} where $A = \begin{bmatrix} 0 & I \\ -2 & -3 \end{bmatrix}$	
			71
	b)	Find the eigen values of the matrix given below: $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	
	,	$\begin{bmatrix} -6 & -11 & -6 \end{bmatrix}$	71

Page **1** of **1**