II B.Tech. II Semester Supplementary Examinations November 2023

Linear Control Systems

(Electrical and Electronics Engineering)

Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
UNIT-I

1. a) Distinguish open loop and closed loop control system
b) Derive the transfer function of an ac servo motor

OR

2. a) Derive the transfer function of armature-controlled dc motor

6M 12
b) Explain the effect of feedback in reducing parameter variations.

8M 1 1

UNIT-II

3. a) A unity feedback contrcl system has an open loop transfer function of $G(s)=K / s\left(s^{2}+4 s+3\right)$. Sketch the root locus

7M 21

OR

4. A unity feedback system is characterized by the open loop transfer function $G(s)=1 / s^{*}(0.5 s+1)(0.2 s+1)$. Determine the steady state error for unit step, unit ramp and unit acceleration inputs.

UNIT-III

5. Find the roots of the characteristic equations for systems whose open loop transfer functions are given below:
i) $G(s) H(s)=1 /[(s+2)(s+4)]$
ii) $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=1(\mathrm{~s}+3) /[\mathrm{s}(\mathrm{s}+3)(\mathrm{s}+8)]$
iii) $G(s)=9 /\left[s 2^{*}(s+2)\right]$.

OR

6. oot locus of the system whose open loop transfer function Sketch the $(\mathcal{Y}+2)(\mathrm{S}+4)$. Find the value of K so that the damping ratio of the
$G(s)=K / \mathrm{S}$ closed loop system is 0.5

UNIT-IV

7. Sketch the bode plot of a feedback system which has
$G(S) H(S)=100^{*}(S+4) /\left[S^{*}(S+0.5) *(S+10)\right]$.
Also comment on the stability of the system.
OR
8. the plot for a system with loop transfer function

$G(\mathrm{~S}) H(\mathrm{~S})$
Find the range of value of K for

UNIT-V

9. Explain design of the basic lead compensator using Bode plot

OR

10. Obtain the state space representation of the field controlled and Armature controlled DC motor
