
		Hall Ticket Number :]]		
				<u> </u>										R-15	
	C	Code: 5G541 II B.Tech. II Se	eme	estei	r Sui	ople	eme	ntar	v Fx	ami	nat	ions	Augu	ust 2021	
			01110			•	herr		•				, togo		
				-	-		nical		-						
		Max. Marks: 70 A power apy five full au	octio	n h	vob	oocir			. octiv	on fr		aab	unit ()	Time: 3 Hou	
	/	Answer any five full qu	esiic		y Ch	OOSII	-	1e qu *****	Jezik		JIII	each	Unii (t	5x14 – 70 Mark	5]
							UNI	T–I							
•	a)												6		
	b)		hat are Air standard cycles? What are the assumptions made in the air standard cycles? rite down the equation used for estimating the thermal efficiency of Air standard otto cycle												
		in terms of compressio	n rat	io?											8
	-)	The minimum process		ما ام		-t	O		40.0	مام	~ * ~	400 1		$d 20^{\circ}$ C. The	
•	a)) The minimum pressure and temperature in an Otto cycle are 100 KPa and 30 ^o C. The amount of heat added to the air per cycle is 1500 KJ/Kg. i) Calculate the pressure and temperature at all the points. ii) Calculate specific work and thermal efficiency of the cycle													
		for a compression ratio	•		our	Jaiate	, obo	onio		ana					10
	b)	Why the actual cycle e	fficie	ncy is	s mu	ch lo	wer t	he ai	r star	ndard	l cyc	le effi	ciency?	?	Z
							UNI	T–11							
	a)	List out the differences	betv	veen	two	strok	e eng	gine a	and fo	our st	roke	engi	ne.		7
	b)	Elucidate the working of forced circulation cooling system with the help of neat sketch.										7			
							O		<u> </u>						
•	a) What is carburetion? Explain the working of Simple Carburetor with neat sketch.								h.	1(
	b)	Compare and contrast	betw	/een	S.Ie				engi	nes.					Z
	c)	List out the characteris	ticc	of ac					hore	and	ito t	VDOC	ucod in	SLonginos	6
•	a) b)	Explain the phenomen		•						sanu	115 1	ypes	useu III	or engines.	6
	D)				ung i	n pe	01 010	U	5.						C
		List the various types of	of cor	nbus	tion	cham		-	l in C	l eng	jines	and	explain	them with the	
		help of neat sketch.							_						14
							UNIT								
•		Explain the measurem					r by t	he fo	llowir	ng me	etho	ds.			
		i) Willan's line method.	II) M	otorii	ng le	est	O								14
-		A four cylinder, four s compression ratio of 6 mean indicated press per hour, if the indicated	. The ure a	e eng and a	ine c ir sta	devel anda	e ha ops 2 rd eff	s a 25 kV ficien	V ind cy. A	icate	d po calcu	wer a	at 2000 the fue	rpm. Find the I consumption	
		MJ/kg.							_						14
							UNI								
•	a)	Explain the working p triangles and Show its		-			-			naı	neat	sket	ch. Dra	aw its velocity	10
	b)	Write short notes abou	t the	impo	ortan	ce of			er use	ed in	air c	ompr	essors.		4
		With a past shotsk	مامات	th c -	م م	n~ -	Ol f root			ممدا	derti	رم <u>الم</u>	0.000000	nion for resta	
•	a)	With a neat sketch expective efficiency.	Jiain	uie	WOrk	ng o	1 100	IS DIC	wer	and	ueriv	้ ย เกย	expres	SSION IOF TOOLS	10
		eniolonoy.	-												10

4M

		Hall Ticket Number :															
	C	Code: 5G245														R-15	
		II B.Tech. II Se	eme	estei	r Sup	ople	eme	ntar	уE>	kam	inati	ions	A	ugu	ust 20	21	
		E	lect							-	gine	erin	ng				
	-	Max. Marks: 70 Answer any five full qu	estio	·	Mec y cho		ng or ****	ne qi *****		Ū		each	I UI	nit (ł		ne: 3 Hc = 70 Mar	
	、	Otata and availatin Kinak	- () -			44	UNI				-						014
1.	a) b)	State and explain Kirch					•			•							8M
	b)	Find the power consun	leu c	iy ea	cirre	51510	1 5110		i ngu		IOW						
		20 V 20 V	n	-w	6 Ω												
																	6M
							O	R									
2.	a)	Derive relationship bet	ween	star	to de	elta a	and d	elta t	o sta	r cor	iversi	on					10M
	b)	Three resistances of 3 supply. Find the curren								ecte	d in p	oarallo	el	acros	ss a 1	00V DC	4M
							UNI	- 11									
3.	a)	With neat diagrams ex	olain	the c	const	ructio			chine	ė							10M
0.	b)	Expalin Faradays law							01111								4M
	0)						O										
4.		Explain about speed co	ontro	l met	hods	of D	C mo	otor v	vith r	eces	sary	circu	iit d	diagra	ams		14M
							UNIT	[]]]									
5.	a)	Explain the constructio	n, wo	orkiną	g prin	L			phas	se Ind	ductic	n mc	oto	r.			10M
	b)	Why a single phase inc	ductio	on me	otor c	does	not s	elf -s	tart?								4M
							O										
6.	a)	Explain in detail Princip		•		n of a	altern	ator	with	a dia	gram	•					7M
	b)	Deduce EMF equation	of al	terna	tor.												7M
								- 11/									
7.	a)	Describe the working	ofa		liuna				th n	eat (lianra	ams	Δ	ادہ م	volair	n its V-I	
7.	aj	characteristics.	01 0		Jun	50011	aloc				lagit			100 0	, Aprair		10M
	b)	Explain about biasing															4M
	,						O										
8.		Derive the expression	for av	/erac	je, Rl	MS, e	efficie	ency	and	ripple	facto	or of	ha	lf-wa	ve rec	tifier.	14M
							UNI	Г–V									
9.	a)	Explain the working pri	ncipl	e of (CRO	with	its co	ompo	nent	bloc	k dia	gram	l				10M
	b)	What are the application	ns of	f CR	С												4M
						- f-	O		.:	la - "	al- '		_	- t	al: د ا	4 m ² m	
10.		What is dielectric heati material depends? And	-	-				on wi	1ICN 1	ine d	lelect		SS	of a	aielec	tric	14M
					appi	Sano		**									

		Hall Ticket Number :	
		Code: 5G542	
		II B.Tech. II Semester Supplementary Examinations August 2021	
		Fluid Mechanics and Hydraulic Machinery	
		(Mechanical Engineering)	
		Time: 3 Hou Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks	
	/		, j
		UNIT-I	
1.	a)	What is meant by surface tension? Derive the expressions for i. Pressure intensity inside a	
		droplet. ii. Pressure intensity inside a soap bubble.	61
	b)	Calculate the specific weight, specific mass, specific volume and specific gravity of a liquid	
		having a volume of 6 m ³ and weight of 44 kN. OR	8N
2.	a)	Differentiate between Atmospheric, Gauge and Vacuum Pressures.	6N
	b)	A U-Tube differential manometer connects two pressure pipes A and B. Pipe A contains carbon	
		tetrachloride having specific gravity 1.594 under a pressure of 11.772 N/cm ² and the pipe B	
		contains oil of specific gravity 0.8 under a pressure of 11.772 N/cm ² . The pipe A lies 2.5m above pipe B. Find the difference of pressure measured by mercury as fluid filling U-Tube.	81
		UNIT-II	010
3.	a)	Describe the Reynolds's experiment with the help of a neat sketch.	6N
	b)	Derive the expression for force exerted on pipe bend?	8N
		OR	
4.		A horizontal pipe line 40m long is connected to a water tank at one end and discharges freely	
		into the atmosphere at other end. For the first 25m of its length from the tank, the pipe is 150mm diameter and its diameter is suddenly enlarged to 300mm. The height of water level in the tank	
		is 8m above the centre of the pipe. Considering all losses of head which occur, determine the	
		rate of flow. Take f=0.01 for both sections of the pipe.	14N
_			
5.	a)	What is a velocity triangle? Show the velocity triangles at inlet and out let when a jet strikes a moving curved plate.	4N
	b)	A nozzle of 50mm diameter delivers a stream of water at 20m/sec perpendicular to a plate that	
	,	moves away from the Jet at 5m/sec. find i. the force on the plate, ii. work done iii. the efficiency	
		of jet.	10N
6.		OR Show that the efficiency of free jet striking normally on a series of flat plates mounted on the	
•		periphery of a wheel can never exceed 50%.	14N
		UNIT–IV	
7.	a)	Briefly explain about the working principle of pelton wheel with a neat sketch and derive the	
	г.)	expression for work done?	14N
	b)	Briefly explain about the working principle of pelton wheel with a neat sketch and derive the expression for work done?	14N
		OR	
8.		A Kaplan turbine working under a head of 25 m develops 16000 kW shaft power. The outer	
		diameter of the runner is 4 m and hub diameter is 2 m. The guide blade angle is 35. The hydraulic and overall efficiency are 90% and 85% respectively. If the velocity of whirl is zero at	
		outlet, determine: (i) runner vane angles at inlet and outlet, and speed of turbine.	141
_			
9.	a) b)	Define specific speed of centrifugal pump. Derive an expression for the same?	6N 0 N
	b)	Explain the working principle of centrifugal pump with a neat sketch? OR	81
0.	a)	Differentiate between centrifugal pump and reciprocating pump?	61
	b)	A double acting reciprocating pump, running at 50r.p.m. is discharging 900 liters of water per	
		minute. The pump has stroke of 400mm. The diameter of piston is 250mm. The delivery and	
		suction heads are 25 m and 4m respectively. Find the slip of the pump and power required to drive the pump.	81
		۸۵۰۰ مربع مربع مربع مربع مربع مربع مربع مربع	01

	Н	all Ticket Number :	Ъ								
	Сс	ode: 5G543									
	II B.Tech. II Semester Supplementary Examinations August 2021										
	Kinematics of Machinery										
	N A .	(Mechanical Engineering) ax. Marks: 70 Time: 3 Hours	~								
		nswer any five full questions by choosing one question from each unit (5x14 = 70 Marks) ********									
		UNIT–I									
1.	a)	Define and explain the following terms: mechanism, machine, link and kinematic pair.	4M								
	b)	What do you understand by degrees of freedom? For a plane mechanism derive an expression for degrees of freedom	10M								
~		OR Sketch and explain any two inversions of a double slider crank chain.	4 4 5 4								
2.			14M								
3.		In a four bar chain ABCD, AD is fixed and is 150 mm long. The crank AB is 40 mm long									
0.		and rotates at 120 r.p.m. clockwise, while the link $CD = 80$ mm oscillates about D. BC									
		and AD are of equal length. Find the angular velocity of link CD when angle $BAD = 60^{\circ}$.	14M								
		OR									
4.		State and prove Kennedy's theorem as applicable to instantaneous centres of rotation of three bodies. How is it helpful in locating various instantaneous centres of a mechanism?									
5.	a)	UNIT-III Sketch a Paucellier mechanism. Show that it can be used to trace a straight line.	7M								
0.	b)	What is a Scott-Russel mechanism? What is its limitation? How it is modified?	7M								
	~)	OR									
6.		Two shafts with an included angle of 160° are connected by a Hooke's joint. The driving									
		shaft runs at a uniform speed of 1500 r.p.m. The driven shaft carries a flywheel of mass 12 kg and 100 mm radius of gyration. Find the maximum angular acceleration of the									
		driven shaft and the maximum torque required.	14M								
		UNIT–IV									
7.		A pair of gear has 16 teeth and 18 teeth, a module 12.5 mm an addendum 12.5mm and a pressure angle 14.5°. Prove that gears have interference. Determine the minimum number	14M								
		of teeth and the velocity ratio to avoid interference. OR	1-111								
8.		In a reverted epicyclic gear train, the arm A carries two gears B and C and a compound gear D - E. The gear B meshes with gear E and the gear C meshes with gear D. The number of teeth on gears B, C and D are 75, 30 and 90 respectively. Find the speed and direction of gear C when gear B is fixed and the arm A makes 100 r.p.m. clockwise.									

- 9. Explain with sketches the different types of cams and followers
 - OR
- 10. A cam with 40 mm minimum radius is rotating clockwise at uniform speed of 1200 rpm. It has to operate a knife edge follower as defined below:
 - i) Follower has to move outward through 30 mm during 900 of cam rotation with uniform velocity
 - ii) Dwell for the next 30°
 - iii) Follower is to return to its starting position with SHM during next 120°.
 - iv) Follower is to dwell for the remaining period. Draw the cam profile taking the line of action of the follower passing through the center of the cam.

Determine the maximum velocity and acceleration of the follower during the return stroke

14M

14M

14M

	На	II Ticket Number :												
L	Cor	de: 5GC42					R-15							
		II B.Tech. II Semester S	upplemer	ntary Exami	nations	August	2021							
				& Statistics		/ (0905)	2021							
			-	CE, ME and I										
	Μ	ax. Marks: 70			,		Time: 3 Ho	Urs						
	A	nswer any five full questions by c	choosing one		om each	unit (5x1	4 = 70 Mark	<s)<="" td=""></s>						
			4.4.4.4.4.											
			UNIT-	1										
1.	a)	Define the following (i) Sample Sp			e (iv) Prob	ability		8M						
	b)	Two marbles are drawn in succ	cession from	a box contai	ning 10 r	ed, 30 wł	nite, 20 blue	9						
	,	and15 orange marbles, with re-	eplacement	being made	after ead	ch drawin	g. Find the	÷						
		probability that (i) both are white (and second is	white.			6M						
0	,	Ctate and prove Addition the area	OR or probabilit	he far two as a rest				014						
2.	a)	State and prove Addition theorem	-	-				8M						
	b)	If two dice are throw, Find the pro			10			6M						
2		A random variable X has the follo	UNIT-I											
3.		X 0 1	<u> </u>	4 5	6	7								
				4 5 2K 3K	6 K ²	7K ² +K								
		P(X) 0 K				/ N ⁻ +N								
		Find the value of K , (ii)Evaluate		(III) Evaluate p	p(x < 5)			14M						
			OR				<u>.</u> .							
4.		The mean and variance of a bino $P(x = 1)$ and $P(x > 2)$	mial variable	X with param	eters n an	id p are 16	3 and 8. Find							
		P(x = 1) and P(x > 2)						14M						
5.		A population consists of the four	UNIT-I		ider all no	osihla sar	moles of size	2						
5.		2 which can be drawn with replace			•		•							
		standard deviation, and mean and		• •		• •								
			OR											
6.		It is desired to estimate the mean number of hours of continuous use untila certain computer												
		will first require repairs. If it can be assumed that \dagger =48 hours, how large abe needed so that one will be able to assert with 90% confidence that the sample mean is off by at most												
		10 hours.	th 90% contic	dence that the	sample i	mean is o	n by at mos	t 14M						
			UNIT-I	V				1 1101						
7.	a)	A sample of 64 students has a			n this be	regarded	as a sample	Э						
	,	from a population with mean weig	•	•		•	·	7M						
	b)	In a big city, 325 men out of 60	00 men were	found to be	smokers.	Thus this	s information	۱						
		supports the concussion that the		en in the city a	are smoke	ers.		7M						
			OR											
8.		According to the norms establis		•		•								
		years old have an average heigh	-	-										
		If 45 ($n = 45$) members random null hypothesis ~ = 73.2, against	•	•	•									
		significance.		live hypothes	15 ~ > /.	o.∠at the	0.01 level i							
		significance.		1				14M						
9.		In an investigation on the machin	UNIT-\		a reculte ·	are obtain	ed							
9.			No. of units	-	0	of defective								
		Machine I	37	•	110.0	17								
		Machine II	45			22								
		Test whether there is any signification			chines at	= 0.05		14M						
			OR											
10.		4 coins were tossed 160 times an	nd the followin	ng results were		i ,								
		No, of Heads 0	1	2	3		4							
		Frequency 17	52	54	31		6							

Frequency175254316Under the assumption that coins are unbiased, find the expected frequencies of 0,1,2,3,4heads and test the googness of fit for=0.05

14M