٢				1		1									
	Ha	II Ticket Number :												D 10	٦
	Cod	de: 5G542												R-15	
		II B.Tech. II Se	eme	ster	Sup	ple	mer	ntary	/ Exam	ninat	ions	С	Octo	ber 2020	
		Flui	d M	ech	nan	ics	and	Нy	drauli	c Mo	ach	in	ery		
				(Me	chai	nica	l Eng	gineerir	ng)				T . 0.11	
	MC	ax. Marks: 70 Answer all five uni	ts by	chc	osin	g on		estio *****		each	unit	(!	5 x 14	Time: 3 Hours = 70 Marks)	;
						U	NIT-	l							
۱.	a)	Define mass densit	y, sp	ecific	: weię	ght, s	specif	ic vo	lume an	d spe	cific g	gra	avity.		7
	b)	The dynamic viscos	sity o	of oil (used	for l	ubrica	ation	betwee	n a sh	haft a	ind	l slee	ve is 6 poise. The	÷
		shaft is of diameter						•				•	wer l	ost in the bearing	
		for a sleeve length	of 90	mm.	Ihe	thick			e oil film	IS 1.5	omm.	•			7
_		– 1 · <i>A</i> · <i>A</i>					0								
2.	a)	Explain the terms s			, stre	eam t	ube,	strea	ik line ar	nd pat	n line	e			7
	b)	Derive Continuity e	quati	on?											7
							NIT-			I	.				
3.		From the fundament equation.	ntals	deriv	ve E	uler's	s ene	rgy e	equation	and	from	It	dedu	ce the Bernoulli's	s 14
							0	R							
4.	a)	Define body force a	and s	urfac	e for	се									4
	b)	A main pipe divide diameter for the fin diameter of second pipe, if total flow in	rst pa I para n the	aralle allel p maii	l pip pipe a	e are are 2	e 200 000m	00m n anc	and 1m I 0.8m. I	resp Find t	ective he ra	ely ite	, whi of flo	le the length and w in each paralle	 }
		same and equals to	0.00	JS.											10
F	c)	Draw the general la	wout	and	ovola		NIT-I		o of hud	ro olo	otrio	n 0	worn	lant	7
5.	a) b)	e e	-		•				S OF HYU	io ele	CINC	ρo	wei p	nam.	7
	b)	Explain about pump	Jeu S	luraç	je po	wei	יומית 0								7
6.		A jet of water of 8 30m/sec. The curve the force exerted of	ed va	ne is	mov	ring v	rikes vith a	a cu velo	city of 8	m/sec	in th	e (direct	ion of the jet. Find	1
		Assume that the pla		-					· · · ,	- , 1	-				14
						U	NIT-I	V							
7.		How are Hydraulic	turbir	nes c	lassi	fied a	and e	xplaii	n?						14
							ο	R							
8.	a)	State the advantage	es ar	nd dis	adva	antag	es of	Frar	ncis turb	ines c	ver a	аP	elton	wheel.	7
	b)	How are Hydraulic	turbir	nes c	lassi	fied a	and e	xplaiı	n?						7
						U	NIT-Y	V							
9.	a)	What is governing a	and h	iow it	is a	ccom	plish	ed fo	r differe	nt type	es of	wa	ater tu	urbines?	7
	b)	What is cavitation?	How	can	it be	avoid	ded ir	n rea	ction tur	bines	?				7
	-						0	R							
).		Define specific spec	ed of	a ce	ntrifu	igal p	-	Deri **	ive an e	xpres	sion f	for	the s	pecific speed	14

	На	II Ticket Number :												_		1
	Code: 5G543															
	II B.Tech. II Semester Supplementary Examinations October 2020															
				K	iner	nati	ics d	of M	act	nine	ry					
	(Mechanical Engineering)															
	Max. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)															
	UNIT–I															
1.	Explain with examples.										14M					
2.	OR Sketch and explain any two inversions of single slider crank chain.											14M				
3.																
	ii) A point on link CD, 100mm from the pin connecting the links CD and AD. OR											14M				
4.	a) The length of crank and connecting rod of a vertical reciprocating engine are 150mm and 750mm respectively. The crank rotates at 400 rpm clockwise. Find analytically the acceleration of the piston when the crank has turned through 30° from the top dead center, and the piston is moving downwards.									7M						
	b)	A rigid link AB is r angular acceleration find the total acceleration	on'	'. De	scrib	e the	e me	thod	of d	•			•		•	7M
						U	NIT-I	11								
5.		Sketch the Peauce describes a straight		-		ie mo	otion	mec	hanis	m ar	nd pr	ove t	that th	ne t	racing point 'P'	14M
							0	R								
6.		The angle between shaft rotates at an 9kW. Calculate the and the output torqu	unifo radio	orm us of	spee gyra	d of tion o sha	240r. of the	p.m. e flyw es no	The heel	drive of th	en sh e driv	haft o /en s	arries shaft h	s a navi	steady load of ng mass 50 kg	14M
7.		A compound epicy on axis P. the com F. All the gears hav 18, 45 and 21 resp 100 rpm in anticlo speed and direction	npoui ve ec pectiv pck w	nd ge qual vely. vise e	ear B pitch The g direct	anc The gear tion a	ICro num sDa and g	otate nber ind E gear	toge of ex are	ther terna	on th al tee Ilus g	ne ax th or gears	kis Q n geai s. The	at i rs, . e ge	the end of arm A, B and C are ear A rotates at	

- 8. a) Define interference in gears.
 - b) Two 20° gears have a module of 4mm. The number of teeth on gear is 40 and on gear 2 is 24. If the gear 2 rotates at 600 rpm, determine the velocity of sliding when the contact is at the tip of the teeth of gear 2. Take the addendum equal to one module. Also find the maximum velocity of sliding.

UNIT–V

- 9. Draw the profile of a cam operating a knife-edge follower having a lift of 30mm. The cam raises the follower with SHM for 150° of the rotation followed by a period of dwell for 60°. The follower descends for the next 100° rotation of the cam with uniform velocity, again followed by a dwell period. The cam rotates at an uniform velocity of 120rpm and has a least radius of 20mm. What will be the maximum velocity and acceleration of the follower during the lift and the return?
- 10. It is required to set out the profile of a cam to give the following motion to the reciprocating follower with a flat mushroom contact surface: (i) follower to have a stole of 20mm during 120° of cam rotation, (ii) Follower to dwell for 50° of cam rotation, (iii) Follower to return to its initial position during 90° of cam rotation (iv) Follower to dwell for remaining period of cam rotation. The minimum radius of the cam is 25mm. the outer stroke of the follower is performed with SHM and return stroke with equal uniform acceleration and retardation.

OR

12M

2M

14M

14M

Hall Ticket Number :						[
						R-15

Code: 5GC42

II B.Tech. II Semester Supplementary Examinations October 2020

Probability & Statistics

(Common to CE, ME, CSE & IT)

Max. Marks: 70

Time: 3 Hours

Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)

UNIT-I

- 1. a) Find the probability of getting a sum of 10 if we throw two dice
 - b) A random variable X has the following probability function

Х	0	1	3	4	5	6	7
P(x)	0	K	2K	2K	3K	K ²	7K ² +K

- (i) Find the value of K
- (ii) Evaluate p(0<X<5)
- (iii) Evaluate p(X<6)

OR

- 2. a) If $P(A) = \frac{1}{2}$, $P(B) = \frac{1}{3}$ and $P(A \cap B) = \frac{1}{5}$ then find (i) $P(A \cup B)$ (ii) $P(A^{\circ} \cap B)$ (iii) $P(A \cap B^{\circ})$ (iv) $P(A^{\circ} \cap B^{\circ})$
 - b) Find the continuous probability function f(x)=k x² e^{-x} when x 0 find (i) k
 (ii) mean (iii) variance

UNIT–II

- a) A die is thrown 6 times. If getting an even number is a success, find the probabilities of
 (i) at least one success
 (ii) 3 successes
 (iii) 4 successes
 - b) If a random variable has a poisson distribution such that P(1) = P(2) find
 - (i) Mean of the distribution
 - (ii) P(4)
 - (iii) P(x 1)
 - (iv) P(1<x<4)

OR

- 4. a) The mean and variance of a binomial variable X with parameters n and p are 16 and 8. Find P(x = 1) and P(x > 2)
 - A hospital switch board receives an average of 4 emergency calls in a 10 minute interval. What is the probability that
 - (i) There are at most 2 emergency calls in a 10 minute interval
 - (ii) There are exactly 3 emergency calls in a 10 minute interval

UNIT-III

- 5. a) A normal population has a mean of 0.1 and standard deviation of 2.1. Find the probability that mean of a sample of size 900 will be negative
 - b) A random sample of size 81 taken whose variance is 20.25 and mean is 32, construct 98% confidence interval

OR

- 6. a) The variance of population is 2. The size of the sample collected from the population is 169. What is the standard error of mean
 - b) A research worker wants to determine the average time it takes a mechanic to rotate the tires of a car and he wants to be able to assert with 95%. Confidence that the mean of his sample is of by at most 0.5 minutes. If he can presume from past experience that $\sigma = 1.6$ minutes how large a sample will have to take

UNIT–IV

- a) In a sample of 1,000 people in Karnataka 540 are rice eaters and the rest are wheat eaters. Can we assume that both rice and wheat are equally popular in the state at 1% level of significance
 - b) If 80 patients are treated with an antibiotic 59 got cured. Find a 99% confidence limits to the true population of cure

OR

8. The mean yield of wheat from a district A was 210 pounds with S.D 2.5 inches per acer from a sample of 100 plots. In another district the mean yield was 220 pounds with S.D 12 pounds from a sample of 150 plots. Assuming that the S.D of yield in the entire state was 11 pounds. Test whether there is any significant difference between the mean yield of crops in the two districts

UNIT–V

9. The measurements of the output of two units have given the following results. Assuming that both samples have been obtained from the normal populations at 10% significant level, Test whether the two populations have the same variance

Unit-B	14.0	14.5	13.7	12.7	14.1
Unit-A	14.1	10.1	14.7	13.7	14.0

10. The number of automobile accidents per week in a certain community are as follows 12, 8, 20, 2, 14, 10, 15, 6, 9, and 4. Are these frequencies in agreement with the belief that accident conditions were the same during this 10 week period

[Hall	Ticket Number :				<u> </u>											
L		e: 5G541												R-	15		
	Code	II B.Tech. II S	Semeste	er Su	laa	eme	enta	rv Ex	am	inat	ions	Oct	obe	er 20:	20		
					• •			odyr					0.00				
								ngine									
	Mo	ax. Marks: 70					19			1				-	: 3 Ho	ours	
		Answer all five u	nits dy cr	noosi	ng o		Uest *****		om e	eacr	n Unit	(5X	4 =	70 M	arks)		
						UNIT	[]]									
1	. a)	Why the actual c	ycle effic	iency	is m	uch	lowe	rs the	e air	stan	dard	cycle	effic	iency	? List	the	
		major losses and	difference	es in a	actua	l eng	jine a	and ai	r stai	ndaro	d cycl	es.					7M
	b)	Explain				. .											-14
		i) Time loss factor	· II)	Heat	loss			III) LO	oss d	ue to	o gas	excha	nge	proce	SS		7M
~		Compare and cont	root the d	fforor			OR		roko	ongi		ith For	ur ofr	oko o	nainaa	റ	714
2	,	Compare and cont						wu Si	loke	engi	ies w		JI SU	JKE EI	ngines	<i>!</i>	7M 7M
	b)	Explain Magneto	ignition sy	sten		UIAY]									7 101
3	. a)	Describe with suit	able sket	ches	L] n nhe	nom	enon	in C	Lenai	nes :	and e	xolain	the	
0	. aj	two phases of cor		01100		onno	aotio	n prio		onon		ii origi	1100 (Apiani		8M
	b)	What is the effect	of														
		i) Viscosity ii) Sp	pecific hea	at iii)) Den	sity a	and iv	/) Gu	m de	posit	s on	the qu	ality	of a fi	uel.		6M
							OR										
4	. a)	Explain and discu	ss the ph	enom	nenor	of d	liesel	knoc	k in (C.I ei	ngine	S					6M
	b)	What are the diffe	erent stage	es of	comb	oustic	on in	C.I er	ngine	? Ex	plain	with F	- d	liagra	m.		8M
					L	JNIT											
5	. a)	Explain any one t		-						•	•	er outp	out o	f an e	ngine.	ļ.	7M
	b)	Describe the vario	ous engin	e per	forma		•	metei	's in l	orief.							7M
~	>	What is the use	of boot	holon			OR	n	ainaC		ntion	the	orio	ia ita	ma ta	ha	
6	5. a)	What is the use determined to cor							gine :	ivie	nuon	the v	anot	is ite	ms to	be	10M
	b)	A rope brake has	brake wł	neel d	diame	eter c	of 600) mm	and	the	diam	eter of	rope	e is 5	mm. T	The	
		dead load on the					spring	g bala	ance	read	ds 30	N. If	the	engir	ne ma	kes	
		450rpm, find the t	brake pow	er ae			N7]									4M
7		List the various t	types of	rotan				and	ovol	ain t	ho w	orking	nrin	ciplo	of Pc	oote	
7	'. a)	blower.	iypes of	lotary		pies	5015	anu	evhi			UKIIY	i piii	cipie		1015	6M
	b)	An air compress	or takes	in aiı	r at 1	l bai	r and	1 20°	C an	d co	mpre	esses	it ac	cordir	ng to	law	••••
	,	pv1.2=constant. It	is then d	eliver	ed to	a re	eceiv	er at	a co	nstar	nt pre	ssure	of 8	bar.	R= 0.2	287	
		kJ/kg K. Determi		-				nd of	com	pres	sion;	(ii) W	/ork	done	and h	leat	
		transferred during	compres	sion	per k	-	air. OR										8M
8		A single stage, do	uble activ	00.00	mnro			a frod	a air i	doliv	arv of	- 14 m	³ /mi	n me	asura	te h	
0	•	1.013 bar and 15°		•	•						•						
		bar, 32º C. The de	•				•			-			•				
		The clearance vol				•				ate:							
		(i) Indicated powe	er required	d. (ii)				ciency	/.								14M
0		Drow the cohome	tio diagra	m of						r ond		loin ita	wor	king (with	
9	. a)	Draw the schema velocity triangles.	lite ulagra		axiai	now	all C	ompr	6220		i exp		wor	King a	along v	WILLI	6M
	b)	What is surging in	n axial- flo	w coi	npres	ssors	s? Wł	nat ar	e its	effec	ts? D	escrib	oe bri	efly.			8M
	- 1				•		OR							-			
10	. a)	Compare axial flo	w compre	essor	and o	centri	ifuga	l com	pres	sor.							6M
	b)	A centrifugal air c	•		•	•			•								
		rate of 10 kg/s. I		•				•								find	
		(i) The final tempe Take =1.4 and C			as ar	u	(II) P	ower	requ	ned	io ari	ve me	com	press	sor.		8M
				, · · ·			***										

	Hall	Ticket Number :	
		e: 5G245	
,	200	II B.Tech. II Semester Supplementary Examinations October 2020	
		Electrical and Electronics Engineering	
		(Mechanical Engineering)	
		x. Marks: 70 Time: 3 Hours Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)	
		UNIT-I	
1.	a)	State and explain Kirchhoff's laws.	7M
	b)	Three resistances of 1 ohm, 2 ohm & 3 ohm are connected in parallel across a 20V DC supply. Find the current flowing through each element.	7M
		OR	
2.	a)	Derive the expression for equivalent inductance of two parallel connected inductors.	7M
	b)	Three resistances of 1 ohm, 2 ohm & 3 ohm are connected in a Star connection. Find the equivalent Delta network.	7M
3.	a)	Derive EMF equation of a DC Generator.	7M
	b)	A 4-pole, lap wound, DC generator has a useful flux of 0.07 wb per pole. Calculate the generated emf, when it is rotated at a speed of 900 rpm with the help of prime mover. Armature consists of 440 numbers of conductors. Also calculate the generated emf. If	
		lap wound armature is replaced by wave wound armature.	7M
		OR	
4.	a)	Derive the condition for maximum efficiency of dc motor.	7M
	b)	Explain the speed control methods used for dc motors.	7M
Б	\sim	UNIT–III Explain the operation of a 1 phase transformer with the help of relevant diagram.	7M
5.	a) b)	A 250 KVA, single phase transformer has 98.135% efficiency at full load and 0.8 lagging	7 101
	D)	p.f. The efficiency at half load and 0.8 lagging p.f. is 97.751%. Calculate the iron loss	
		and full load copper loss.	7M
		OR	
6.	a)	Define the voltage regulation? Explain about synchronous impedance method of finding	
			7M
	b)	Explain torque slip characteristics of a three phase induction motor.	7M
7	-)	UNIT-IV	014
7.	a) b)	Explain the operation of bridge rectifier with relevant diagrams. Write the necessary conditions for oscillators.	8M 6M
	b)	OR	OIVI
8.	a)	Explain the operation of a transistor as an amplifier.	7M
0.	a) b)	Explain about frequency response of a CE amplifier.	7M
	0)		7 101
9.	a)	What are the applications of induction heating?	5M
•	b)	Explain about induction heating with necessary diagrams.	9M
	- /	OR	
10.	a)	List the applications of dielectric heating.	5M
	b)	Explain the working of CRO with relevant diagrams.	9M
	,	***	