	Hall Ticket Number :			
	Code: 5G542	R-15		
	II B.Tech. II Semester Supplementary Examinations December 2	022		
	Fluid Mechanics and Hydraulic Machinery	-		
	(Mechanical Engineering)			
		e: 3 Hc		
	Answer any five full questions by choosing one question from each unit (5x14 =	70 Ma	rks)	
	<u> </u>	Marks	со	
	UNIT–I			
1.	Calculate the specific weight, specific mass, specific volume and specific gravity			
	of a liquid having a volume of 6 m^3 and weight of 44 KN.	14M	CO1	
	OR			
2.	What are the different types of fluid flow? Explain.	14M	CO1	
	UNIT–II			
3.	State the assumptions made in the derivation of Bernoulli's equation and hence			
	derive the Bernoulli's equation.	14M	CO2	
	OR			
4.	A pipe of diameter 40 cm carries water at a velocity of 25 m/s. The pressures at			
	the point A and B are given as 29.4 N/cm^2 and 22.56N/cm^2 respectively while the			
	datum head at A and B are 28 m and 30 m. Find the loss of head between A and			
	В.	14M	CO2	
	UNIT–III			
5.	Derive the expressions for force and work done per second by the jet when it			
	strikes a flat plate, inclined Plate, curved plate moving in the direction of the jet.	14M	CO3	
	OR			
6.	What are the radial vanes? What are the velocity triangles? What are the uses of			
	their drawing for a typical case of a jet striking a moving plate?	14M	CO3	
	UNIT–IV			
7.	Explain the different types of the Efficiencies of a turbine.	14M	CO4	
	OR			
8.	With a neat sketch explain the working principle of Pelton wheel.	14M	CO4	
	UNIT–V			
9.	A single acting reciprocating pump has a plunger of diameter 0.3m and stroke of			
	length 0.4m. If the speed of the pump is 60 rpm and coefficient of discharge is			
	0.97, determine the percentage slip and actual discharge of the pump.	14M	CO5	
	OR			
0.	Explain following			
	i) Main characteristic curves ii) Operating characteristic curves iii) Muschel curves	14M	CO5	

Hall Ticket Number :						
						R-15

Code: 5G543

II B.Tech. II Semester Supplementary Examinations December 2022

Kinematics of Machinery

(Mechanical Engineering)

Max. Marks: 70 Time: 3 Hours Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

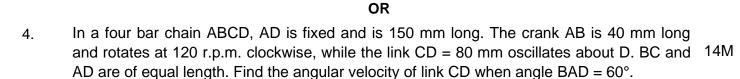
UNIT–I

1. Sketch and describe the working of two different types of quick return mechanisms. Give examples of their applications. Derive an expression for the ratio of times taken in forward and return stroke for one of these mechanisms

OR

2. Write notes on complete and incomplete constraints in lower and higher pairs, illustrating your answer with neat sketches.

UNIT–II


3. In the mechanism shown in Fig, the slider C is moving to the right with a velocity of 1 m/s and an acceleration of 2.5 m/s^2 . The dimensions of various links are AB=3m inclined at 45° with the vertical and BC = 1.5 m inclined at 45° with the horizontal. Determine: a. The magnitude of vertical and horizontal component of the acceleration of the point B, and b. the angular acceleration of the links AB and BC.

45

D

3 m

.5 m

UNIT-III

- 5. a) Sketch a Paucellier mechanism. Show that it can be used to trace a straight line.
 - b) What is a Scott-Russel mechanism? What is its limitation? How it is modified? 7M

OR

6. Derive an expression for the velocity of the driven shaft in a Hook's coupling 14M

UNIT–IV

7. Two involute gears of 20° pressure angle are in mesh. The number of teeth on pinion is 20 and the gear ratio is 2. If the pitch expressed in module is 5 mm and the pitch line speed is 1.2 m/s, assuming addendum as standard and equal to one module, find :

a. The angle turned through by pinion when one pair of teeth is in mesh ; and

b. The maximum velocity of sliding.

OR

8. A pair of gear has 16 teeth and 18 teeth, a module 12.5 mm an addendum 12.5 mm and a pressure angle 14.5°. Prove that gears have interference. Determine the minimum number of teeth and the velocity ratio to avoid interference.
14M

UNIT-V

- 9. A cam with 30 mm minimum radius is rotating clock wise at 1200 rpm to give the following motion to a roller follower of 20 mm radius.
 - i) Lift = 25 mm
 - ii) Follower rise during 120° cam rotation with simple harmonic motion.
 - iii) Follower to dwell for 60°cam rotation.
 - iv) Follower to return during 90° cam rotation with uniform acceleration and deceleration.
 - v) Follower to dwell for remaining period.

Construct the profile of the cam and determine the maximum velocity and acceleration during rise and return. 14M

OR

10. Explain with sketches the different types of cams and followers

Page 1 of 1

14M

7M

14M

14M

14M

14M

	Hall Ticket Number :						
	Code: 5GC42					R-15	
	II B.Tech. II Seme	Prob	ability & St	atistics	ns Decemt	oer 2022	
	Max. Marks: 70 Answer any five full que.	·	non to CE, N osing one qu		each unit (5x	Time: 3 Hou 14 = 70 Marks	
			UNIT–I			Marks	CO BL
1.	If $P(A) = 1/4$, $P(B) = 1/4$			nd P(A/ B),	P(B/A), P (,	4 10
	and P (A $/B'$).		OR			14M	1 L2
2.	State and prove Baye's t					14M	1 L2
3.	Ten coins are throw sime heads (ii) six heads		•	bility of getti	ng at least (i) seven 14M	2 L1
4.	If the probability of a ba chance that out of 2000 i			•			2 L4
5.	If we can assert with 95% of the sample.		JNIT–III kimum error is	s 0.05 and P	is 0.2. Find t	he size 14M	3 L2
6.	Find 95% confidence limit which the following samp			•		from 14M	3 L2
7.	A random sample of 10 bo 107, and 100. Do these da	bys had the foll	assumption c				4 L4
8.	A random sample of 100 of 71.8 years. Assuming seem to indicate that the level of significance.	g a populatio	n standard d	eviation of 8	.9 years, do	bes this	4 L4
9.	The measurements of the Assuming that both samp 10% significant level, Tes	e output of two bles have beer	n obtained fro	m the norma	l populations	at	
	Unit-A 14.1	10.1	14.7	13.7	14.0]	
	Unit-B 14.0	14.5	13.7	12.7	14.1	14M	4 L4
	· I	1	OR				
10.	4 coins were tossed 160	times and the No, of Heads Frequency	following res 0 1 2 17 52 54	3 4	ained,		
	Under the assumption t 0,1,2,3,4 heads and test	hat coins are		•	cted frequer	ncies of 14M	4 L4

	ŀ	Hall Ticket Number :	р 1	F	
	С	ode: 5G541	R-1		
		II B.Tech. II Semester Supplementary Examinations Decemb	er 2022	2	
		Applied Thermodynamics-I (Mechanical Engineering)			
			Time: 3 4 = 70 N		
			Marks	со	BL
		UNIT–I			
1.		With the help of P-V and T-S diagrams explain OTTO cycle and derive an		001	
		expression for air standard efficiency. OR	14M	CO1	L2
2.	a)	Elaborate the following.			
	,	i) Exhaust blow down loss ii) Loss due to rubbing friction	6M	CO1	L2
	b)	Explain about Time loss factor and Heat loss factor with suitable diagrams.	8M	CO1	L2
		UNIT–II			
3.	a)	Discuss with a neat sketch, the working principle of carburetor and explain	714	000	
	b)	its Components. What are different fuel injection systems for C.I engines? Explain any one?	7M 7M	CO2 CO2	L2 L1
	0)	OR	7 101	002	L1
4.	a)	Discuss about thermostat cooling system with a neat diagram.	6M	CO2	L2
	b)	Write short notes on			
		(i) Solid Injection System, (ii) Wet sump Lubrication System UNIT-III	8M	CO2	L2
5.		Describe with suitable sketches the combustion phenomenon in S.I			
		engines and explain the two phases of combustion.	14M	CO3	L2
6	2)	OR Write notes on (i) fuel rating and (ii) anti-know additives.	7M	CO3	10
0.	a) b)	List out the requirements of good combustion chamber in SI engines.	7M	CO3	L2 L2
	2)		7 101	000	
7.		A rope brake was used to measure the brake power of a single cylinder			
		4-stroke petrol engine. It was found that the torque due to brake load is 175 N-m and the engine runs at 500 rpm. Determine the brake power			
		developed by the engine?	14M	CO4	L3
		OR			
8.		List out various methods for measurement of friction power and explain			
		Morse method of determination of friction power.	14M	CO4	L1
9.		UNIT-V Derive an expression for the isothermal efficiencies of a reciprocating			
5.		compressor in terms of the pressure ratio.	14M	CO5	L6
		OR			
10.	a)	List the various types of rotary compressors?	7M	CO5	L1
	b)	Discuss with a neat sketch, the working of a roots blower.	7M	CO5	L2
