	F	Hall Ticket Number :			_
			R-15	;	
	Co	ide: 5GC41 Il B.Tech. Il Semester Supplementary Examinations March 20)21		
		Complex Variables and Special Functions	<i>7</i> <u></u>		
		(Common to EEE & ECE)			
	Μ	ax. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 ********	ne: 3 H Marks		;
			Marks	со	Blooms
		UNIT-I			Level
1.	a)	Show that $\int_{0}^{1} \frac{x^{m} - 1(1-x)^{n-1}}{(x+a)m^{1+n}} = \frac{\int_{0}^{-1} \frac{x^{m}}{(x+a)m^{1+n}}}{an(1+a)m^{1+n}}$			
	b)	Find all the roots of $\frac{1-m+n}{2m+n} = \frac{1}{m} \frac{1}{m}$	7M	2	
	5)		7M	2	I
2.	a)	Show that $\int_{0}^{c} x^{n} e^{-a^{2}x^{2}} \equiv \frac{1}{2an+1} \Gamma\left(\frac{n+1R}{2}\right), n > -1$		0	
)	Find all values of z which satisfy $\frac{1}{2} = \frac{n}{2} - 2$.	7M 7M	2 2	11
	5)		7 101	2	1
3.	a)	Show that $\frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}$	7M	1	I
	b)	Find all the values of k such that $\frac{2}{f(x)} = \frac{2}{f(x)} + \frac{2}{f(x)}$ analytic.	7M	1	I
		OR			
4.	a)	Show that the function $e^{ich that e^{i}(z)} = e^{ich}$ not analytic at the origin, although $e^{ich}(z) = \sqrt{ z ^2}$ is			
		Cauchy- Riemann equations are Satisfied at the point.	7M	1	I
	b)	Find k such that $\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$	7M	1	I
-	、	Evaluate $\int_{C} \int_{Z^2 dz} \int_{Z^$			
5.	a)	Evaluate $\int_{C} z^{2} dz$ where C is the straight line segment from $O(z=0)$ to $A(z=2+i)$.	7M	2	V
	b)	Express $\int_{C_{Z}}^{C_{Z}} \frac{z^{2} d_{1}}{z} = \frac{1}{z}$ he Taylor series at the point $\begin{bmatrix} ent f \\ z = 1 \end{bmatrix}$.	7M	2	П
0					
6.	a)	Verify Cauchy's theorem for the function the point $f(z) = \frac{1}{z^2 + iz - 4}$ if <i>C</i> is the square with the vertices at $1 \pm i$ and $-1 \pm i$.	7M	2	III
	b)	Express $f_{(z)}^{\text{errices}} = (\frac{1}{(1-z)(z-2)})^{\text{arrives}} a$ is the Laurent's series expansion in an annulus region			
		1 < z < 2.	7M	2	II
		UNIT- <u>IV</u>			
7.	a)	Show that $\int_{-\infty}^{\infty} \frac{\cos ax}{x^2+1} dx = \pi e^{-a}, a \ge 1$.	7M	3	II
	b)	Show that t^{J-o} the subset of zeros of the subset of			
		$ f(z) = 2 z^4 - 2 z^3 + 2 z^2 + 2 z + 1$, that lie inside the circle $ z = 1$.	7M	3	III
		OR + $2z + 11$, hat lip inside the			
8.		Solve $\int_{-\infty}^{\infty} \frac{dx}{(x^2+d^2)(x^2+b^2)} dx$, $a > 0'b > 1'$, $a \neq b$.	14M	3	
		UNIT–V			
9.	a)	Illustrate the infinite strip $0 < \frac{1}{y < \frac{1}{2}}$ under the			
		transformation $w = \frac{1}{z}$.	7M	2	П
	b)	Find the bilinear transfor			
		onto the point $(-1, -2, -i)$ in the w-plane.	7M	2	Ι
10.	a)	OR Illustrate the in and ane.			
	4)	Illustrate the in nage of the rectar $gle \stackrel{\text{ane.}}{\underset{R: -\pi < x < \pi, \frac{1}{2} < y <}{\text{and}} 1$ under the		~	
	۲	transformation $w = \sin z$.	7M	2	II
	b)	tring the linear = 5 nsformation that maps $\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} = 0, \begin{bmatrix} 2 & 1 \\ 2 & 2 \end{bmatrix} = 1, \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix} = 0$ onto $\begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix} = 1, \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix} = 0$ onto	7M	2	I
		*****	7 171	~	ı

	Hal	I Ticket Number :	
		e: 5G344	R-15
		II B.Tech. II Semester Supplementary Examinations March 2	021
		Field Theory and Transmission Lines	
	Max	(Electronics and Communication Engineering) د. Marks: 70	ne: 3 Hours
	-	Answer all five units by choosing one question from each unit (5 x 14 = 70 ********	
		UNIT–I	Marks
1.	a)	Charges of 20nC and -20nC are located at (3,0,0) and (-3,0,0) respectively.	
	,	Calculate the magnitude of Electric field intensity at origin.	7M
	b)	Given the electric flux density, $D=0.3r^2a^r$ nC/m ² in free space. Find Electric	714
		field intensity E at point P(r=2, θ =25°, ϕ =90°) OR	7M
2.	a)	i. Apply Gauss law to calculate Electric field due to point charge Q.	
	,	ii. Assume zero potential at infinity, Determine the potential at a distance 'r'	
		from the point charge Q.	8M
	b)	Two point charges -4 μ C and 5 μ C are located at (2,-1, 3) and (0, 4, -2), respectively. Find the potential at (1, 0, 1) assuming zero potential at infinity.	6M
		UNIT–II	
3.	a)	Consider a conductor of uniform cross section S and length I connected to a	
		source of electromotive force. Assume electric field E exists inside the	CM
	b)	conductor to sustain flow of current. Determine the resistance of conductor. Define boundary conditions? Determine the boundary conditions at dielectric-	6M
	0)	dielectric interface.	8M
		OR	
4.	a)	Define capacitance of a capacitor. Determine the capacitance of parallel plate	714
	b)	capacitor. State Continuity of current equation. Derive Continuity equation. Express the	7M
	0)	Continuity equation for steady currents and what do you infer from this	
		expression.	7M
		UNIT–III	
5.	a)	State Biot-Savarts law. How to determine the direction of magnetic field	
	,	intensity.	6M
	b)	Determine Magnetic field due to straight current carrying filament of finite	8M
		length.	OIVI
6.	a)	State Amperes Law. Apply Amperes circuit law to determine magnetic field for	
-	-7	Infinite sheet of current.	8M
	b)	Relate Scalar and Vector magnetic potentials to Magnetic field Intensity.	6M

		UNIT–IV	coue.
7.		Compute the following parameters for moist soil $\epsilon_r = 16$, and $= 5$ mS/m at	
		frequency of 100MHz.	
		i. Propagation constant γ	
		ii. Attenuation constant α	
		iii. Phase constant	
		iv. Intrinsic impedance η	
		v. Skin depth _c	
		vi. Tangent loss tan	14M
		OR	
8.	a)	Explain skin depth and derive expression for depth of penetration for good	
		conductor.	7M
	b)	Find skin depth for a copper conductor at frequency 1MHz. The conductivity	
		of copper is $5.8*10^7$ S/m and $\mu_r=1$.	7M
		UNIT–V	
9.	a)	Explain the meaning of the terms characteristic impedance and propagation	
		constant of a uniform transmission line and obtain the expressions for them in	
		terms of parameters of line.	7M
	b)	Calculate the reflection coefficient and VSWR for a 50 lines, terminated	
		with	
		i) matched load. ii) short circuit.	7M
		OR	
10.	a)	Derive the expression for the input impedance of a transmission line of length L	7M
	b)	Explain the applications of smith chart.	7M

	Co	ode: 5G342	R-1:	5	
	00	II B.Tech. II Semester Supplementary Examinations March 20	021		
		Pulse and Digital Circuits			
		(Electronics and Communication Engineering)			
	Μ	ax. Marks: 70 Tin	ne: 3 I	Hours	
		Answer all five units by choosing one question from each unit ($5 \times 14 = 70$	Marks	5)	
		******		~~	Blo
			Marks	CO	Le
	a)	UNIT–I Prove that for any periodic input wave form the average level of the steady state			
•	a)	output signal from RC high pass circuit is always zero.	7M	CO1	
	b)	Derive the expression for percentage tilt(P) of a square wave output of RC high	7101	001	
	5)	pass circuit.	7M	CO1	
		OR		001	
	a)	Analyze the high pass RC circuit for the following inputs, with the help of wave forms			
		i) Exponential input ii) Ramp input	6M	CO1	
	b)	Explain how a low pass RC network acts as attenuator and ringing circuit	8M	CO1	
		UNIT–II			
•	a)	Explain the working of an Emitter coupled clipper with circuit diagram.	8M	CO1	
	b)	Write a short note on Diode switching times	6M	CO1	
		OR			
•	a)	Draw the diode comparator circuit and explain the operation of it when ramp			
		input signal is applied.	7M	CO1	
	b)	Explain how a transistor can be used as a switch	7M	CO1	
	-)	UNIT-III			
•	a)	Explain the operation of Fixed-Bias Bistable multivibrator with circuit diagram and waveforms.	7M	<u> </u>	
	ь)		7 101	CO2	
	b)	Design collector coupled monostable multivibrator for the following specifications. VCC=10V, VBB= -5V, IC(sat)= 10mA, hFE=20, VBE(off)= -0.5V,			
		Output pulse width tp= 200μ S. (assume Si transistors)	7M	CO2	
		OR			
•	a)	Explain how an Schmitt trigger circuit acts as a comparator	7M	CO2	
	b)	Design the Astable Multivibrator to generate 1 KHz square wave. The supply			
		voltage VCC=10V, IC(sat)=10mA hfe=50 and assume Si transistors.	7M	CO2	
		UNIT–IV			
•	a)	Explain briefly the different methods of generating time-base waveform	6M	CO3	
	b)	With the circuit diagram explain current time base generator.	8M	CO3	
		OR			
•	a)	Explain about the linearly correction through adjusting of driving waveform.	7M	CO3	
	b)	Explain how UJT is used for sweep circuit?	7M	CO3	
	,	UNIT-V			
•	a)	Explain the basic operation of sampling gate.	8M	CO4	
	b)	Explain the operation of unidirectional diode gate.	6M	CO4	
	2)	OR	714	00 i	
•	a) b)	Draw and explain the circuit diagram of integrated positive DTL NAND gate.	7M	CO4	
	b)	Compare the RTL and DTL logic families in terms of Fan out, propagation	7M	004	
		delay, power dissipated per gate and noise immunity.	7 111	CO4	

	Н	all Ticket Number :			
			R-15		
	Co	de: 5G341 II B.Tech. II Semester Supplementary Examinations March 202	21		
		Random Variables and Random Processes			
		(Electronics and Communication Engineering)	.		
	Μ	Time Answer all five units by choosing one question from each unit (5 x 14 = 70 ۸	∋: 3 Ha Aarks)	ours	
		**************************************	ians j		
			Marks	СО	Bloom Level
		UNIT–I			
1.	a)	Explain the concept of Total probability and Baye's Theorem	8M	CO1	L2
	b)	An experiment is throwing a coin trice, the random variable represents the number of heads comes out. Find and sketch the distribution and density functions.	6M	CO1	L1
		OR			
2.	a)	A lot of 100 semiconductor chips contains 20 that are defective. Two chips are	8M	CO1	L1
		selected at random, without replacement, from the lot.			
		i. What is the probability that the second one selected is defective given that the			
		first one was defective. ii. What is the probability that both are defective?			
	b)	Explain the Gaussian random variable.	6M	CO1	L2
	,	UNIT-II			
3.	2)	$(b-a)^2$		CO2	L2
5.	a)	Show that $T_x^2 = \frac{(b-a)^2}{12}$, where <i>X</i> is a random variable uniformly distributed			
		over (a,b) .	8M		
	b)	State and Prove the Chebyshev's inequality.	6M	CO2	L5
	、	OR		<u> </u>	
4.	a) Þ	What is the expected value of an exponential random variable X?	8M	CO2	L1
	b)	Determine the mean and variance of new random variable Y=2X+3, where X is Gaussian random variable.	6M	CO2	L5
5.	a)	Define the joint density function and list out its properties.	8M	CO2	L1
	b)	State and prove Central Limit Theorem.	6M	CO2	L5
•	、	OR		000	
6.	a)	Random variables X and Y have respective density functions	8M	CO2	L3
		$f_X(x) = \frac{1}{a}[u(x) - u(x - a)]$ & $f_Y(y) = bu(y)e^{-by}$ where $a > 0, b > 0$. Solve and			
		sketch the density function of $W = X + Y$ if X and Y are statistically independent.			
	b)	Explain about the jointly Gaussian random variables.	6M	CO2	L2
	,	UNIT-IV			
7.	a)	Explain the concept of Random process.	8M	CO3	L2
	b)	Explain about stationary random process.	6M	CO3	L2
0	c)	OR	014	CO3	10
8.	a) b)	Explain Time Averages and Ergodocity.	8M 6M	CO3	L2
	b)	State and prove the properties of Auto correlation function.	OIVI	005	L5
9.	a)	Develop the relationship between the Auto correlation function and Power	8M	CO4	L3
	,	spectral density.			
	b)	Determine thity. iss correlation function corresponding to the cross power	6M	CO4	L5
		spectrum $SXY(\omega) = \frac{8}{(\alpha + j\omega)^3}$			
		OR			
10.	a)	Develop that $c = \frac{c}{c} \frac{r_{B}\omega}{r}$	8M	CO4	L3
	b)	Determine the transfer function 21 and 50 ftwo port RC Network	6M	CO4	L5
	,	****			