|| B.Tech. II Semester Supplementary Examinations August 2021

Complex Variables and Special Functions

(Common to EEE \& ECE)

Time: 3 Hours
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$

UNIT-I

1. a) Symmetry of Beta function $B(m, n)=B(n, m)$
b) Evaluate $\int_{0}^{1} \frac{x^{2}}{\sqrt{1-x^{5}}} d x$ in terms of B function OR
2. a) Find real and imaginary parts $\cot z$
b) Find all the roots of $\sin z=2$

UNIT-II

3. Determine P such that the function $f(z)=\frac{1}{2} \log \left(x^{2}+y^{2}\right)+i \operatorname{Tan}^{-1}\left(\frac{p x}{y}\right)$ be an analytic function

OR
4. Find an analytic function whose real part is $e^{-x}[x \sin y-y \cos y]$

UNIT-III
5. Evaluate $\int_{c}\left(y^{2}+2 x y\right) d x+\left(x^{2}-2 x y\right) d y$ where $\quad \mathrm{c}$ is the boundary of the region by $y=x^{2}$ and $x=y^{2}$

OR

6. Expand $\log z$ by Taylor's series about $\mathrm{z}=1$.

UNIT-IV

7. a) Find the poles and Residues at each pole $\frac{z e^{z}}{(z-1)^{3}}$
b) Use Residue theorem to find the number of zeros of the polynomial $z^{10}-6 z^{7}+3 z^{3}+1$ if $|z|<1$
8. Evaluate $\int_{c} \frac{e^{2 z}}{(z-1)(z-2)} d z$ where c is the circle $|z|=3$

UNIT-V

9. Find the bilinear Transformation which maps the point ($-1,0,1$) into the points $(0, i, 3 i)$.

OR

10. Find the image of the region in the z-plane between the lines $\mathrm{y}=0$ and $y=\frac{\pi}{2}$ under the Transformation $w=e^{z}$.

I| B.Tech. II Semester Supplementary Examinations August 2021

Field Theory and Transmission Lines

Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Define co-ordinate system? Explain different types of co-ordinate systems.
b) Write a short note on following: i) Stoke's theorem ii) Divergence theorem.

OR
2. a) Define Electric potential? Derive the expression for Electric potential.
b) Determine the Divergence and curl vector field as $\mathrm{T}=10 \mathrm{r} \sin _{2} \quad 2 \mathrm{cos}$.

UNIT-II

3. a) Write and explain different kinds of current density's with suitable diagrams and expressions.
b) In a cylindrical conductor of radius 2 mm , the current density varies with distance from the axis according to $\mathrm{J}=10^{3} \mathrm{e}^{-400 r} \mathrm{~A} / \mathrm{m}^{2}$. Find the total current I .

OR
4. a) Derive the expressions for resistance of conductor with uniform cross section
b) If $\mathrm{J}=1 / \mathrm{r}^{3}\left(2 \cos \mathrm{a}_{\mathrm{r}}+\sin a\right) \mathrm{A} / \mathrm{m}^{2,}$ calculate the current passing through
i) A hemispherical shell of radius $20 \mathrm{~cm}, 0 \ll \pi / 2,0 \ll 2 \pi$
ii) A spherical shell of radius 10 cm

UNIT-III

5. a) Derive the force equation due to current element.
b) Write Maxwell's equations for static EM fields.

OR

6. State and prove Biot savart's law ,using Biot savart's law derive an expression for magnetic field strength H due to a finite \&Infinite filamentary conductor carrying a current I and placed along Z -axis at appoint P on Y -axis .hence deduce the magnetic field strength for the length of the conductor extending from $-\infty+\infty$.

UNIT-IV
7. a) Define the wave? List out the different medias and Give the properties of different medias. Write the E\&H equations in those medias.
b) A uniform plane wave propagating in medium has $E=2 e^{-\alpha z} \sin \left(10^{8} t-\beta z\right) a_{y} V / m$. If the medium is characterized by $\epsilon_{\mathrm{r}}=1, \mu_{\mathrm{r}}=20$ and $\sigma=3 \mathrm{~S} / \mathrm{m}$. Find α, β and H .

OR

8. a) Derive the relation between $\mathrm{E} \& \mathrm{H}$ in a uniform plane wave. find the value of intrinsic impedance of free space.
b) In free space $H=0.1 \cos \left(2 \times 10^{8}-\beta_{z}\right) a_{y} A / m$, calculate i) β, λ and T ii) the time t_{1} takes by the wave to travel a distance of $\lambda / 8$.

UNIT-V

9. a) Define transmission line? And explain different types of transmission line with neat sketches.
b) Discuss about infinite line concept.

OR

10. a) Derive the expression for the input impedance of a transmission line of length.
b) A loss less line of 300Ω is terminated by a load of Z_{R}. if the VSWR at 200 MHZ is 4.48 , and the first $\mathrm{V}_{\text {min }}$ is located at 6 cm from the load .calculate the reflection coefficient and Z_{R}
\square
Code: 5G342
|| B.Tech. || Semester Supplementary Examinations August 2021

Pulse and Digital Circuits

(Electronics and Communication Engineering)

Max. Marks: 70

Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$

UNIT-I

1. a) Discuss the application of Attenuator as a CRO probe
b) Define the following:
i) Linear wave Shaping
ii) Lower cutoff frequency
iii) Rise time
OR
2. A 10 Hz square wave is fed to an amplifier. Calculate and plot the output waveform under
the following conditions. The lower $3-\mathrm{dB}$ frequency is a) $0.3 \mathrm{~Hz} \mathrm{b)} 3 \mathrm{~Hz} \mathrm{c)} 30 \mathrm{~Hz}$

UNIT-II

3. a) State and Prove the clamping circuit theorem.
b) Explain the operation of a two level diode clipper with the help of circuit diagram?

OR

4. a) Explain the diode switching times with their neat diagrams 10M
b) Explain piecewise linear characteristics of the diode 4M

UNIT-III

5. Draw the circuit diagram of Fixed Bias Bistable Multivibrator and explain its operation with the help of wave forms at base and collector

OR

6. Find the Lower and Upper Threshold voltage for Schmitt trigger circuits with following data. Assume transistors with $h_{f e}=30, V_{c c}=12 \mathrm{~V}, R_{c 1}=4 \mathrm{~K}, \mathrm{R}_{\mathrm{c} 2}=1 \mathrm{~K}, \mathrm{R}_{1}=2 \mathrm{~K}, \mathrm{R}_{\mathrm{s}}=1 \mathrm{~K}, \mathrm{R}_{2}=6 \mathrm{~K}, \mathrm{R}_{\mathrm{e}}=3 \mathrm{~K}$

UNIT-IV

7. a) How is linearity corrected through adjustment of the driving waveform for a Current Time Base Generator
b) What are the applications of Time Base Generators

OR

8. a) Illustrate the working principle of Bootstrap time base generator
b) Explain transistor Miller time base generator with neat diagram

UNIT-V

9. a) Explain about unidirectional sampling gate with neat sketch 8M
b) Discuss the advantages and disadvantages of Unidirectional sampling gate 6M

OR
10. a) Verify the truth table of CMOS NOR gate with neat sketches 10M
b) What are the applications of sampling gates? 4M

