Hall Ticket Number :

\square
R-15
Code: 5G246
|| B.Tech. II Semester Supplementary Examinations October 2020
Electrical Technology(Electronics and Communication Engineering)
Max. Marks: 70Time: 3 HoursAnswer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)********
UNIT-I1. Explain about Impedance and Admittance Parameters in detail with example and drawequivalent circuits.14M
OR2. a) Explain in detail about the ABCD parameters with example.7M
b) Obtain the expression of Z parameters in terms of Y parameters. 7M
UNIT-II3. a) Explain in detail about the transients in R-C series circuit with DC Excitation?7M
b) A circuit of resistance 10 ohms and the inductance of 0.1 H in series has a direct voltage of 200 V suddenly applied to it. Find the voltage drop across inductance at the instant of switching on and at 0.01 second? 7M
OR
4. Obtain the DC response of Series RLC Circuit.14M
UNIT-III
5. a) Define filter and write short notes on low-pass filter? 7M
b) Discuss about constant k low pass and high pass filters. 7M
OR
6. a) Derive the design equations for Lattice type attenuator? 6 M
b) What is attenuator? Design a T-section symmetrical attenuator to provide a voltage attenuation of 15 dB and having a characteristic impedance of 500 ? 8M
UNIT-IV
7. a) Explain about three point starter. 8M
b) Discuss torque equation of dc motor. 6 M
OR
8. a) Write the applications of different types of DC motors? 4M
b) Draw and explain magnetization and load characteristics of DC shunt generator? 10M
UNIT-V9. a) Explain the operation of capacitor start and capacitor run motor.7M
b) Discuss stepper motor and its characteristics. 7M
OR
10. a) What is the need of a transformer? 5M
b) Explain the Constructional details of transformer with necessary figures. 9M

Code: 5G344

II B.Tech. II Semester Supplementary Examinations October 2020
Field Theory and Transmission Lines
(Electronics and Communication Engineering)
Max. Marks: $70 \quad$ Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Compute the expression for electricfield due to line charge distributions?
b) Point charges 5 nC and -2 nC are located at $(2,0,4)$ and $(-3,0,5)$, respectively .
i) Determine the force on a 1 nC point charge located at $(1,-3,7)$.
ii) Find the electric field E at $(1,-3,7)$

OR

2. a) State and prove Gauss's law .Express Gauss's law in both integral and differential forms. and also discuss the salient features and limitations of Gauss's law
b) Obtain the expression for the field and the potential due to a small electric dipole
oriented along

UNIT-II

3. a) Derive the equation for Continuity equation and relaxation time
b) A parallel plate capacitor with free space between the plates is connected to a constant source an voltage .Determine how electro static energy wE, capacitance C, total charge Q and surface charge density ρ_{s} change as dielectric of $\epsilon_{r}=2$ is inserted between the plates.

OR
4. a) Derive an equation of polarization ' p ' in dielectric materials
b) Derive Poisson's and Laplace's equations starting from Gauss's law 7M

UNIT-III

5. a) State and derive Biot-Savart's law? Is Magnetostatic field conservative discuss, hence obtain M.E for divergence of magnetic field?
b) A current element of length 2 cm is located at the origin in free space and carries current 12 mA along a_{z}, a filamentary current of $15 \mathrm{a}_{\mathrm{z}}$, is located along $\mathrm{x}=3, \mathrm{y}=4$. Find the force on a current filament?

OR

6. a) What is magnetic energy? Derive energy stored in Magnetostatic field?

8M
b) Given the magnetic vectct? Deritial $\mathrm{V}_{\mathrm{vm}}=\left(-\rho^{2} / 4\right) \mathrm{a}_{\mathrm{z}} \mathrm{wb} / \mathrm{m}^{2}$? Calculate the total magnetic
flux crossing the surface $\boldsymbol{\Phi}=\boldsymbol{p}=\boldsymbol{m} / 2,1<\rho<2 \mathrm{~m}, 0<\mathrm{Z}<5 \mathrm{~m}$?

UNIT-IV

7. a) For conducting medium derive expressions for $\dot{\alpha}$ and ${ }_{\beta}$? 7M
b) State and prove pointing theorem. 7M

OR
8. a) Derive expression for reflection and transmission coefficients of an EM wave when it is incident normally on a dielectric.

b) Distinguish between good conductors and good dielectrics. explain the wave
propagation in good dielectrics

UNIT-V

9. a) Explain how quarter wave transformer is used for load matching and impedance measurement of a transmission line?

b) An open wire transmission line having characteristic impedance 600Ω is terminated by a
resistive load of 900Ω. Design single stub matched transmission line.

OR

10. a) Why stub matching is used? Explain the double stub matching for transmission lines 7M
b) Explain Smith chart and its applications?

Hall Ticket Number :

Code: 5G342

|| B.Tech. II Semester Supplementary Examinations October 2020

Pulse and Digital Circuits

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Explain the operation of RC low pass circuit for a square wave input
b) A 10 Hz symmetrical square wave whose peak-to-peak amplitude is 2 V is impressed upon a High pass circuit whose lower 3 -dB frequency is 5 Hz . Calculate and sketch the output wave form. In particular, what is peak-to-peak output amplitude?

OR

2. a) Explain the pulse response of an RC High pass circuit.
b) What is the attenuator? Explain it with neat sketch.

UNIT-II

3. a) Discuss in detail about diode switching times
b) Explain how transistor acts as a switch with relevant diagrams.

OR

4. a) State and prove clamping circuit theorem.
b) Illustrate the operation of two-level diode clipper with appropriate expressions.

UNIT-III

5. a) Explain the basic principles of Miller and Bootstrap time base generators?
b) Explain the principle of Synchronization and frequency division in blocking Oscillator?

OR

6. a) Draw and explain Sweep circuit using UJT?
b) Derive the expression for slope error and sweep speed for the Bootstrap Sweep circuit?

UNIT-IV

7. a) Classify the different methods of generating a time base waveform? Explain them briefly.
b) Describe the operation of Bootstrap time generator using transistors with neat sketch.

OR

8. a) Discuss about the simple Current sweep circuit
b) Explain about the linearity correction through adjusting of driving waveform

UNIT-V

9. a) Draw the circuit of bidirectional sampling gate using diodes. Derive the expression for gain.
b) What do you mean by pedestal? How pedestal can be reduced in sampling gate.

OR

10. a) Realize two inputs TTL NAND gate truth table and explain its operation with suitable circuit diagram.
b) Examine the operation of OR \& AND logic gates with diodes using truth table.
Hall Ticket Number :
R-15
Code: 5G341
II B.Tech. II Semester Supplementary Examinations October 2020
Random Variables and Random Processes
(Electronics and Communication Engineering)
Max. Marks: 70 Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$
UNIT-I1. a) Define Total Probability and Bayes theorem with necessary derivations7M
b) An experiment consists of observing the sum of the numbers showing up when two dice are thrown. If only three events are of interest represented by $A=\{s u m=7\}, B=\{8<$ sum<=7\} and $\mathrm{C}=\{10<$ sum $\}$. Calculate the probabilities of the events by developing the model for the given experiment. 7M
OR
11. Distinguish Distribution and Density functions with their properties and required equations.14M
UNIT-II
12. a) A random X is uniformly distributed on the interval $(-5,15)$. Another random variable $Y=e^{-x / 5}$is formed. Find $\mathrm{E}[\mathrm{Y}]$.7M
b) Define moment generating function and mention its properties. 7M
OR
13. a) Explain the concept of transformation of random variable X.7M
b) A discrete random variable X has possible values $x_{n},=n, n=1,2,3$ which occur with probabilities $p\left(x_{n}\right)=(0.5)^{n}$ Find $E[X]$ and $\operatorname{VAR}(X)$. 7M
UNIT-III
14. State and Prove Central Limit Theorem for equal distributions14M
OR
15. a) Formulate Distribution and Density functions for a sum of two Statistically Independent Random variables 7M
b) Let $g(x, y)=b e^{-x}$ siny for $0 \leq x \leq 2,0 \leq y \leq \pi / 2$, Find constant value 'b' if given function is a valid density function. 7M
UNIT-IV
16. a) State and prove the properties of auto-correlation function.7M
b) Classify Random processes with neat sketches 7M
OR
17. a) Explain the concept of Wide Sense Stationary random processes.7M
b) What is mean ergodic and correlation ergodic random processes. Explain? 7M
UNIT-V9. a) Discuss about the bandwidth of Power Density Spectrum7M
b) Define Power Spectrum and explain its properties. 7M
OR
18. a) Derive relationship between Power Spectrum and auto-Correlation function 7M
b) Define cross power density spectrum. 7M

Code: 5GC41

|| B.Tech. II Semester Supplementary Examinations October 2020

Complex Variables and Special Functions

(Common to EEE \& ECE)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Evaluate $\int_{0}^{1} x^{2}\left(\log \frac{1}{x}\right)^{3} d x$
b) If $\sin (\mathrm{A}+\mathrm{iB})=\mathrm{x}+\mathrm{iy}$, prove that (i) $\frac{x^{2}}{\cosh ^{2} B}+\frac{y^{2}}{\sinh ^{2} B}=1,(i i) \frac{x^{2}}{\sin ^{2} A}-\frac{y^{2}}{\cos ^{2} A}=1$

OR

2. a) Show that $\int_{0}^{\frac{\pi}{2}} \sin ^{2} \theta \cos ^{4} \theta d \theta=\frac{\pi}{32}$
b) Separate into real and imaginary parts for $\mathrm{f}(\mathrm{z})=\operatorname{tanz}$
3. Prove that the function $\mathrm{f}(\mathrm{z})$ defined by $f(z)=\left\{\begin{array}{cc}\frac{x^{3}(1+i)-y^{3}(1-i)}{x^{2}+y^{2}}, z \neq 0 \\ 0, & z=0\end{array}\right.$ is continuous and the $C-R$ equations are satisfied at the origin. Yet $f^{1}(0)$ does not exist.

OR
4. Find the analytic $\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$, if $\mathrm{u}-\mathrm{v}=\frac{\cos x+\sin x-e^{-y}}{2 \cos x-e^{y}-e^{-y}}$ and $\mathrm{f}(\pi / 2)=0$

UNIT-III

5. a) State and prove Cauchy's theorem.
b) Find the Taylor's expansion of $f(z)=\frac{2 z^{3}+1}{z^{2}+z}$ about the point $z=i$.

OR

6. a) If $f(z)$ is analytic inside a circle C with centre at a, then for z inside C prove that
$f(z)=f(a)+f^{\prime}(a)(z-a)+\frac{f^{\prime \prime}(a)}{2!}(z-a)^{2}+----+\frac{f^{n}(a)}{n!}(z-a)^{n}+----$
b) Derive Cauchy's integral formula.

UNIT-IV

7. a) Determine the poles of the function $\frac{z^{2}+1}{z^{2}-2 z}$ and the residue at each pole
b) Use Rouche's theorem to show that the equation $z^{5}+15 z+1=0$ has one root in the disc $|z|<\frac{3}{2}$ and four roots in the annulus $\frac{3}{2}<|z|<2$.

OR
8. a) Evaluate $\int_{c} \frac{z-3}{z^{2}+2 z+5} d z$, where c is the circle $(i)|z|=1,(i i)|z+1-i|=2$
b) state and prove Argument Principle

UNIT-V

9. Find the bilinear transformation which maps the points $z=1, i,-1$ onto the points $w=i, 0,-i$. Hence find (a) the image of $|z|<1$,

OR
10. Show that the transformation effected by an analytic function $w=f(z)$ is conformal at every point of the Z-plane where $f^{\prime}(z) \neq 0$.

