	На	III Ticket Number :								
	Cod	de: 5G341 R-15								
		II B.Tech. II Semester Supplementary Examinations Nov/Dec 2018								
	Random Variables and Random Processes (Electronics & Communication Engineering)									
	Μ	ax. Marks: 70 Time: 3 Hours								
	A	nswer all five units by choosing one question from each unit (5 x 14 = 70 Marks)								
	-)	UNIT-I								
1.	a)	A ball is selected from an urn containing two black balls, numbered 1 and 2, and two white balls, numbered 3 and 4. Let the events A, B and C be defined as follows A={black ball},B={even numbered ball} and C={ball number<2}. Test A and B, A and C are independent or not.	7M							
	b)	A random variable X has the density function $f_X(x) = \frac{1}{2}u(x)\exp\left(-\frac{x}{2}\right)$ Define events								
		$A = \{1 < X \le 3\}, B = \{X \le 2.5\}, \text{ and } C = A \cap B.$								
		Find the probabilities of events i) A, ii) B, and iii) C.	7M							
		OR								
2.	a)	An experiment consists of observing the sum of the numbers showing up when two dice are thrown. Develop a model for this experiment. Also find $P(A)$ and $P(A \cap B)$.	8M							
	b)	Define distribution function. List out various properties of CDF.	6M							
2		UNIT-II								
3.	a)	A random variable X is uniformly distributed on the interval (-5,15). Another random variable $Y = e^{-X/5}$ is formed. Find $E[Y]$.	7M							
	b)	State and Prove the Chebychev's Inequality.	7M							
	,	OR								
4.	a)	Write about moments about the origin and about the central moments.	7M							
	b)	Show that the mean value $E(X)$ and variance σ_X^2 of the Rayleigh random variable are								
		$E[X] = a + \sqrt{\pi b}/4$ and $\sigma_X^2 = b(4 - \pi)/4$.	7M							
		UNIT–III								
5.	a)	Define Joint density function. List out its various properties.	7M							
	b)	The joint density function of two random variables X and Y is								
		$f_{X,Y}(x,y) = \frac{1}{12}u(x)u(y)e^{-(\frac{x}{4})-(\frac{y}{3})}$. Test X and Y are statistically independent or not. OR	7M							
6.	a)	Obtain the expressions for conditional distribution and density i) Point conditioning ii) Interval								
•	.,	conditioning	6M							
	b)	Consider two independent uniform distributed random variables X_1 and X_2 having the same								
		density $f_X(x) = \frac{1}{a}[u(x) - u(x - a)]$. Find the density function of $W = X_1 + X_2$ using Central								
		Limit Theorem.	8M							
		UNIT–IV								
7.	a)	Discuss the random process concept in detail.	7M							
	b)	Assume that an ergodic random process $X(t)$ has an autocorrelation function $R_{XX}(\tau) = 18 + \frac{2}{3} \int \frac{1}{2} \left[1 + 4 \cos(12\tau) \right]$ i) Find $ \overline{X} $ ii) What is the average power in (t)								
		$\frac{2}{6+\tau^2}[1+4\cos(12\tau)]$ i) Find $ \bar{X} $ ii) What is the average power in (t) .	7M							
8.	2)	OR Define Autocorrelation function and write its properties.	6M							
0.	a) b)	Given the random process $X(t) = Acos(\omega_0 t) + Bsin(\omega_0 t)$ where ω_0 is a constant, and A and B	OIVI							
	2)	are uncorrelated zero-mean random variables having different density functions but the same variance σ^2 , show that $X(t)$ is a wide-sense stationary but not strictly stationary.	8M							
		UNIT-V								
9.	a)	Show that the power density spectrum for the random process is $S_{XX}(\omega) = \lim_{T \to \infty} \frac{E[X_T(\omega) ^2]}{2T}$.	8M							
	b)	Find cross-correlation function for the given cross power density spectrum $S_{XY}(\omega) = \frac{8}{(\alpha+j\omega)^3}$								
		where $\alpha > 0$ is a constant.	6M							
		OR								
10.	a)	Explain relationship between autocorrelation function and power spectrum.	8M							
	b)	Obtain autocorrelation function and power spectrum for white noise.	6M							

Hall	Tick	et Number :															
]			R-	15	
Code: 5G343 II B.Tech. II Semester Supplementary Examinations Nov/Dec 2018																	
			_, ,		-		mm										
Мс	A .xr	(E 1arks: 70	lectro	nics c	and (Com	imuni	cati	on I	Engi	inee	erin	g)	1	[ime:	: 3 Ho	ours
		wer all five un	its by c	hoosi	ng o		uestio	n fro	m e	each	ı unit	t (5	5 x 1				
							UNIT-	-1									
1.	a)	Explain the m	nethod	of AM	wave	e usir	ng Squ	lare	law	moc	dulate	or?					6M
	b)	With a neat	•	•						-	-		ed ı	using	g Pha	ase	
		Discriminator	metno	a with	oniy	028	o and r OR	ejeci	ting	the I	LSB.						8M
2.	a)	OR The output current of a 60% modulated AM generator is 1.5A. To what value															
will this current rise if the generated is modulated additionally by another											5M						
audio wave, whose modulation index is 0.7? What will be the percent power saving if the carrier and one of the sidebands are suppressed?									rcenta	age							
	b)	Explain briefly										••					9M
							UNIT-	·II									
3.	a)	Write down the FM bandwidth	•	ressio	ns fo	or WE	BFM a	nd N	IBFI	M? E	Expla	ain	Car	son'	s rule	e of	9M
	b)	An FM signa		resen	ted ir	n time	e dom	ain a	as s	(t) =	= 10	Сс	os ()	2π.1	06 t	+ 5	3101
	- /	Sin 8π.103 t)	•							• •			•				
		band width. OR														5M	
4.	a)	Derive the ex	pressio	ession for a single tone narrow band frequency modulated													
	,	(NBFM) wave									•	,					6M
	b)	With a neat	block d	iagrar	n ex	plain	the g	ener	atio	n of	narr	ow	ba	nd a	and w	/ide	014
		band FM.					UNIT-										8M
5.	a)	Draw the block diagram of FM demodulator and explain the effect of noise in															
		detail and cor	-														8M
	b)	Explain the net is unity.	oise pe	rtorm	ance	of St	SB - S	C ree	ceiv	er ar	na pr	rove	e its	5 S/N	Rati	0	6M
		,					OR										
6.	a)	Prove that the	e FoM f	or AN	l is le	ess th	an on	ə.									7M
	b)	Derive the e improves the					how	pre-	emp	ohas	is/de	e-er	nph	asis	filte	ring	7M
			Signal				UNIT-	IV									7 101
7.	a)	What is imag	• •	-		w is	it reje		? A	lso e	enum	ner	ate	the	steps	s to	
	۲	improve the in	-			•			mito				th		d of	the	6M
	b)	Describe the transfer chara					•					vitri	LLLE	e al		the	8M
							OR										
8.	a)	Define conve											•		a typ	ical	014
	b)	circuit diagrar Explain abour	•			Ū		•	-						am		8M 6M
	~)						JNIT-				r •1		2	~yı			5141
9.	a)	Explain the g	eneratio	on an	d den				ΜW	sign	als.						8M
	b)		and demodulation of a PPM signal from PWM with											6M			
		neat circuit di	ayram				OR										
10.	a)	Compare TD	M and I	FDM.			•										5M
	b)	Explain TDM in TDM.	with its	s bloc	k dia	gram	and o	liscu	ss t	he n	eed	for	syr	nchro	onizat	tion	9M
		וויד דעוטי.					***										3111

Hall	Tick	et Number :	
Code		R_15	
		ech. II Semester Supplementary Examinations Nov/Dec 2018	
		Complex Variables & Special Functions	
Max	Ma	(Common to EEE and ECE) rks: 70 Time: 3 Hou	rs
		all five units by choosing one question from each unit (5 x 14 = 70 Marks	

		UNIT–I	
1.	a)	Evaluate $\int_0^1 x^5 \left(\log \frac{1}{x} \right)^3 dx$	7M
	b)	Separate $log sin(x + iy)$ into real and imaginary parts.	7M
2.	a)	OR Prove that $\rho\left(m^{-1}\right) = 2^{2m-1}\rho(m,m)$	
		Prove that $\beta(m, \frac{1}{2}) = 2^{2m-1}\beta(m, m)$	7M
	b)	If $cosh(u + iv) = x + iy$ prove that $(i)\frac{x^2}{cosh^2u} + \frac{y^2}{sinh^2v} = 1$ (ii) $\frac{x^2}{cos^2u} - \frac{y^2}{sin^2v} = 1$	7M
3.		$\bigcup \text{NIT-II}$	
З.	a)	If $f(z)$ is a regular function of z, prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) f(z) ^2 = 4 f'(z) ^2$	7M
	b)	Find the analytic function whose real part is $e^{x}\{(x^{2} - y^{2})cosy - 2xy siny\}$ OR	7M
4.		Find the analytic fuction $f(z) = u + iv$, if $u + v = \frac{2sin2x}{e^{2y} - e^{-2y} - 2cos2x}$	1 4 5 4
		$\frac{e^{2y}-e^{-2y}-2\cos 2x}{\text{UNIT-III}}$	14M
5.	a)	Evaluate, using Cauchy's integral formula $\oint_C \frac{\sin^2 z}{\left(z - \frac{\pi}{6}\right)^3} dz$, where <i>C</i> is the circle $ z = 1$	
			7M
	b)	Find the Taylor's expansion of $f(z) = \frac{1}{(z-1)(z+1)}$ about the point $z = 1$	7M
6.	a)	OR Evaluate $\int_{0}^{2+3i} (-2 + -3) dx$ along the line is initial the points $(1 - 1)$ and $(2, 2)$	
0.		Evaluate $\int_{1-i}^{2+3i} (z^2 + z) dz$, along the line joining the points $(1, -1)$ and $(2, 3)$	7M
	b)	Find the Laurents series expansion of $f(z) = \frac{1}{(z-1)(z-2)}$ in the region	714
		1 < z < 2	7M
7.	a)	Evaluate $\oint_C \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)^2(z-2)} dz$, where <i>C</i> is the circle $ z = 3$	714
			7M
	~)	Evaluate $\int_{-\infty}^{\infty} \frac{x^2}{(x^2+1)(x^2+4)} dx$	7M
8.	a)	OR Find the sum of the residues of $f(r) = \frac{\sin r}{2}$ at its poles inside the sirele $ r = 2$	
0.	b)	Find the sum of the residues of $f(z) = \frac{sinz}{z \cos z}$ at its poles inside the circle $ z = 2$ Use Rouche's theorem to show that the equation $z^5 + 15z + 1 = 0$ has one root	7M
	5)	in the disc $ z < \frac{3}{2}$ and four roots in the annulus $\frac{3}{2} < z < 2$	7M
			7 101
9.	a)	Find the bilinear transformation which maps the points $z = 1, i, -1$ onto $w = 2, i, -2$	7M
	b)	Prove that the tranformation $w = e^z$	7M
10.	a)	OR Prove that the tranformation $w = sinz$	7M
	b)	Find the bilinear transformation which maps the points $z = i, 1 - 1$ onto $w = 1, 0, \infty$	7M
	-	***	

	ł	Hall Ticket Number :												_			-
	Co	ode: 5G246	1	1	1		1	1		1	I	1	1		R-	-15	
		ll B.Tech. II Sem	nest	er Si	Jbb	lem	ent	ary	Exa	min	atio	ns N	lov/	De	ec 20	18	
								ech		•••							
	λ.	(Ele 1ax. Marks: 70	ectro	onics	and	d Cc	mm	unic	atio	n Er	igine	erin	g)	т	imat	3 Hours	
	IV	Answer all five units	s by (choc	sing	:	*****		fron	n ea	ch ui	nit (t	5 x 14				
4	c)	Evaluia the interconne	otion	oftu					rico	and	noral		onfiai	urot	ional		1014
1.	a) b)	Explain the interconne Obtain the relation for			•						•		•		10115 ?		10M 4M
	0)		TOOIP	loon	y and	l Syll	OR	ynnto	51110	0173		puru	moto	10.			
2.	a)	Develop the Z-parame		nd h	-para	mete	er equ	uivale	ent ci	rcuite	s. Als	o exp	press	the	e Y-pa	rameters	
											10M						
	b)	b) Express the relation between Y-parameters and ABCD parameters. 4M															
3.	a)	Explain in detail about	Explain in detail about the transients in R-L series circuit with DC Excitation? 8M														
	b)	A 500 nF capacitor is	conn	ected	l in se	eries	with	a 100) kΩ	resis	tor a	nd th	e circ	uit i	s conr	nected to)
		a 50 V d.c. supply. Ca ms after connection?	alcula	ite (i)	the i	nitial	valu	e of o	curre	nt flo	wing,	(ii) t	he va	lue	of cur	rrent 150	
							OR										6M
4.	a)	Briefly explain about the	ransie	ents i	n circ	cuits?	?										4M
	b)	Explain in detail about	the t	ransi				series	s circ	uit w	ith D	CEx	citatio	n?			10M
5.	c)	Classify and avalain a	hout	oton	· · · · · ·												6M
5.	a) b)	Classify and explain a A low-pass filter section		-				omin	al im	neda	ince	of 45	002	a cu	ıt-off fr	requency	
	0)	of 150 kHz and a frequ		•						•							
		T section filter?															8M
6.	a)	Derive the design equ	ation	s for	Brido	ned T		o atte	nuat	or?							8M
0.	b)	A π -section attenuate			-		•••				and	shun	t res	ista	nces	of 2 kΩ.	
	-,	Determine (i) the char			mpeo		e, an										6M
7.	a)	A DC generator has a										-	-				
		and the speed is 800 of 1000 r.p.m. (ii) With	•			-				• •					and a	speed	
	b)	Explain different chara			•					•							4M 10M
	D)			51105		5 5110			1651	notoi	3!						TOW
8.	a)	Explain different type	s of E	DC ge	enera	tors?											8M
	b)	Explain the importance	e and	d worl		ofat UNI		point	star	er us	sed ir	n dc r	notor	?			6M
9.	a)	The following test re								, 200) V/4	00 \	/, 50	Hz	singl	le phase)
		transformer. The OC/S OC Test: 200 V 0.8 A					as to	llows									
		SC Test: 20 V 10 A 60		•													
		Calculate the efficience	y at f	ull lo	ad cu	irrent	t, 0.8	laggi	ng p	ower	facto	or.					4M
	b)	Derive the EMF equat	ion a	nd th	e cor	nditio		maxi	mum	effic	iency	/ of a	1-ph	ase	e trans	former?	10M
10.	a)	What are the importar	nt tvo	es of	cana	citor	OR start	indu	ction	mot	nre?						6M
10.	a) b)	Explain briefly about th	•••		•												8M
	- /	, , , , , , , , , , , , , , , , , , , ,					**										5

Hall	Hall Ticket Number :														
Code: 5G344															
II B.Tech. II Semester Supplementary Examinations Nov/Dec 2018															
	Field Theory and Transmission Lines														
Max	(Electronics and Communication Engineering) Max. Marks: 70 Time: 3 Hours								ŝ						
	Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)									0					
								UNI	T–I						
1.	a)	Define "Elec			, "Е	lectr	ic Po	tenti	al" ai	nd "E	lectr	ic Flu	ıx Der	nsity" from	6M
charge and Explain. b) A circular ring lying on x-y plane having 5 cm radius is charged uniformly with									OIVI						
	0)	the total cha	•••	•	•	•		•					•	•	
		along z- axis	5.												8M
0	c)	Lloing Cours	, o 1-	- ام رون	rive	tha a	V0				ric f:		tone	u and alactric	
2.	a)	field density					•							y and electric ty ρ _s C/m²	7M
	b)	Given the flu										-			
		the region 1.	<r<2< td=""><td>n, '</td><td>1<φ <</td><td><2 ra</td><td>d</td><td></td><td></td><td>-</td><td></td><td></td><td></td><th></th><td>7M</td></r<2<>	n, '	1<φ <	<2 ra	d			-					7M
3.	a)	Define the t	erm	pola	rizati	on. V	 With	UNI nece		_ rvex	olan	ation	is aive	e the relation	
0.	u)			•						•	•		•	respect to a	
		dielectric me							_			_	_		6M
	b)	The dielectri at its centre.	•	nere	(ε _r =5	6.7) o	f rad	ius 1	0 cm	has	a po	int c	harge	2 pC placed	
		i) Calculat		e sur	face	char	ge de	ensit	y of t	he p	olariz	zatio	n char	ge on the	
		surface	of th	e sp	here.		-			-				-	
		ii) The forc	ce ex	erte	d by t	the c	harg			oC po	oint c	harg	e on t	he sphere.	8M
4.	a)	What is cont	inuit	/ eai	iatio	າລາດ	l stat	OR e its		ortan	~ _				7M
ч.	b)		-	•					•			aving	cond	uctors of 4cm	7 101
	,	and 2cm dia	amete	ers s	epar	ated	by a	me	dium	of re	elativ	e pe	rmittiv	vity 2.4. Also	
			ed er	ergy	' and	field	at a	radiu	is of	1.5 c	m in	the	dielec	tric when 10V	7M
		is applied													7 111
5.	a)	With necess	•							erive	the r	nagr	etic fi	eld intensity	
	г.)	due to finite									. (1)				8M
	b)	inner diamet	•										•	5 cm with the	6M
				-	-			OR							
6.	a)							•	ation	invol	ving	Fara	iday's	Law. Explain	
	1.5	the concept		•					_					d'alact i di	7M
	b)	State and pro			dary	equa	ation	tor m	nagno	etic fi	eld b	etwe	en a	dielectric and	7M
															2.101

	UNIT–IV	
a)	What is a Poynting Vector, Give the physical interpretation?	
	Does the pointing theorem apply to static field? Explain.	7M
b)	In a medium characterized by σ =0, μ = μ_0 , ϵ_0 and E=20 sin(10 ⁸ t- β z) a _y V/m.	
	Calculate β and H.	7M
	OR	
a)	Derive the expressions for reflection and transmission coefficients, when an perpendicularly polarized electromagnetic wave incidents obliquely on surface of a perfect dielectric	8M
b)	An EM wave travels in Free space with the electric field component E_s = 100 $e^{j(0.866y+0.5z)}$ a _x V/m. Determine the	
	a) Ω and λ	
		6M
a)	Derive the input impedance of the lossless transmission line. Evaluate Zsc and Z_{oc} .	8M
b)	Discuss impedance matching and discuss about the various matching technique.	6M
	OR	
a)	What is Smith Chart? Explain its important features.	6M
b)	An unknown load is connected to a 75 Ω transmission line (lossless). Find the load that is connected if the location of the 1 st minima is at a distance of 0.25 λ away from the load and SWR is found to be 4. Then what is load impedance & load reflection coefficient	8M
	b) a) b) a) b)	 a) What is a Poynting Vector, Give the physical interpretation? Does the pointing theorem apply to static field? Explain. b) In a medium characterized by σ=0, μ=μ_o, ε_o and E=20 sin(10⁸t-βz) a_y V/m. Calculate β and H. OR a) Derive the expressions for reflection and transmission coefficients, when an perpendicularly polarized electromagnetic wave incidents obliquely on surface of a perfect dielectric b) An EM wave travels in Free space with the electric field component E_s= 100 e^{i(0.866y+0.5z)} a_x V/m. Determine the a) Ω and λ b) The magnetic field component UNIT-V a) Derive the input impedance of the lossless transmission line. Evaluate Zsc and Z_{oc}. b) Discuss impedance matching and discuss about the various matching technique. OR a) What is Smith Chart? Explain its important features. b) An unknown load is connected to a 75Ω transmission line (lossless). Find the load that is connected if the location of the 1st minima is at a distance of 0.25λ away from the load and SWR is found to be 4. Then what is load impedance

	Hall Ticket Number :												
Code: 5G342									R-15				
	II B.Tech. II Semester Supplementary Examinations Nov/Dec 2018												
	Pulse and Digital Circuits												
	(E	ectr	onic	:s &	Con	าmบ	nicc	ition	Eng	inee	ering)	
	Max. Marks: 70											Т	ime: 3 Hours
	Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks) *****												
						ι	JNIT	-1				,	

- 1. a) Derive the expression for the output of a high-pass circuit excited by exponential input and ramp for different time constants.
 - b) A 20 Hz symmetrical square wave whose peak to peak amplitude is 1V is impressed upon a high –pass RC circuit whose lower 3-dB frequency is 10Hz. Calculate and sketch the output waveform for the first two cycles. What is the peak-to-peak output amplitude under steady-state conditions?

OR

- 2. a) Define following
 - i. Transmission Error
 - ii. Percentage tilt
 - iii. Attenuator.
 - iv. Over compensation
 - v. Linear wave shaping
 - vi. integrator
 - b) A square wave whose peak-to-peak value is $1V \operatorname{extends} \pm 0.5V$ with respect to ground. The duration of the positive section is 0.1 sec and of the negative section is 0.2 sec. if this wave form impressed upon an RC differentiating circuit whose time constant is 0.2s, what are the steady-state maximum and minimum values of the output waveform? Prove that the area under the positive section equals that under negative section of the output waveform. What is the physical significance of the result?

- 3. a) Give the circuits of different types of shunt clippers and explain their operation with the help of their transfer characteristics.
 - b) State and prove clamping circuit theorem. Sketch the output waveform that you would expect from the circuit shown in figure.

OR

Page 1 of 2

8M

8M

6M

6M

8M

6M

4. a) Explain transfer characteristics of emitter coupled clipper and derive necessary equations.

6M

8M

8M

6M

6M

6M

b) Draw the transfer characteristics for the clipper circuit shown. Assume ideal Diodes.

	UNIT–III
a)	Explain and Derive the expression for frequency of oscillation of an Astable
	multi vibrator.

b) Design a collector coupled Astable multivibrator using NPN silicon transistors with h_{fe} =40, r_{bb} =200 supplied with V_{cc} =10V and circuit component values are R_c =1.2K and C=270 pF.

OR

- 6. a) Explain the operation of a Monostable multivibrator and derive for the pulse width with necessary waveforms & circuits.
 - b) Design a symmetric collector-coupled astable multivibrator to generate a square wave of 10 kHz having peak-to-peak amplitude of 10 V where, h $_{FE}$ min = 30, V_{CE}(sat) = 0.2 V, I_C(sat) = 2 mA 8M

UNIT–IV

7. a) Define and derive the terms slope error, displacement error and transmission error. 8M
b) In the transistor bootstrap circuit, V_{CC}=25V, V_{BE}=-15V, R= 10kΩ, R_E = 15KΩ, R_B = 150KΩ, C= 0.05 µF, and C₁ =100 µF. the gating waveform has a duration Tg =300µS. The transistor parameters are h_{fe} = 1.1 KΩ, h_{re} =2.5X10⁻⁴ kΩ h_{fe} = 50, h_{oe} = 1/40 kΩ

a) Draw the waveforms of I_{C1} and V_{O}

5.

- b) What is the slope error of the sweep
- c) What is the retrace time for C discharge completely?

OR

8. a) How is deviation of linearity expressed? What do you mean by sweep time and restoration time? 6M b) How a compensation circuit improves the linearity of a Bootstrap voltage time 8M base generator? Discuss. UNIT-V a) Realize a NAND gate using DTL and TTL logic. 8M 9. How pedestal is reduced in a gate circuit? Explain. 6M b) OR 10. a) What are the limitations of bidirectional sampling gates explain the operation of 6M four diode sampling gate. Explain about unidirectional diode sampling gate. Write its advantages and b) disadvantages. 8M