II B.Tech. II Semester Supplementary Examinations Nov/Dec 2018
 Random Variables and Random Processes

(Electronics \& Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) A ball is selected from an urn containing two black balls, numbered 1 and 2 , and two white balls, numbered 3 and 4 . Let the events A, B and C be defined as follows $A=\{$ black ball\}, $B=\{$ even numbered ball\} and $C=\{$ ball number $<2\}$. Test A and B, A and C are independent or not.
b) A random variable X has the density function $f_{X}(x)=\frac{1}{2} u(x) \exp \left(-\frac{x}{2}\right)$ Define events
$A=\{1<X \leq 3\}, B=\{X \leq 2.5\}$, and $C=A \cap B$.
Find the probabilities of events i) A, ii) B, and iii) C.

OR

2. a) An experiment consists of observing the sum of the numbers showing up when two dice are thrown. Develop a model for this experiment. Also find $P(A)$ and $P(A \cap B)$.
b) Define distribution function. List out various properties of CDF.

UNIT-II
3. a) A random variable X is uniformly distributed on the interval $(-5,15)$. Another random variable $Y=e^{-X / 5}$ is formed. Find $E[Y]$.
b) State and Prove the Chebychev's Inequality.

OR

4. a) Write about moments about the origin and about the central moments.
b) Show that the mean value $E(X)$ and variance σ_{X}^{2} of the Rayleigh random variable are $E[X]=a+\sqrt{\pi b} / 4$ and $\sigma_{X}^{2}=b(4-\pi) / 4$.

UNIT-III

5. a) Define Joint density function. List out its various properties.
b) The joint density function of two random variables X and Y is $f_{X, Y}(x, y)=\frac{1}{12} u(x) u(y) e^{-\left(\frac{x}{4}\right)-\left(\frac{y}{3}\right)}$. Test X and Y are statistically independent or not.

OR
6. a) Obtain the expressions for conditional distribution and density i) Point conditioning ii) Interval conditioning
b) Consider two independent uniform distributed random variables X_{1} and X_{2} having the same density $f_{X}(x)=\frac{1}{a}[u(x)-u(x-a)]$. Find the density function of $W=X_{1}+X_{2}$ using Central Limit Theorem.

UNIT-IV

7. a) Discuss the random process concept in detail.
b) Assume that an ergodic random process $X(t)$ has an autocorrelation function $R_{X X}(\tau)=18+$ $\frac{2}{6+\tau^{2}}[1+4 \cos (12 \tau)]$ i) Find $|\bar{X}|$ ii) What is the average power in (t).

OR
8. a) Define Autocorrelation function and write its properties.
b) Given the random process $X(t)=A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right)$ where ω_{0} is a constant, and A and B are uncorrelated zero-mean random variables having different density functions but the same variance σ^{2}, show that $X(t)$ is a wide-sense stationary but not strictly stationary.

UNIT-V

9. a) Show that the power density spectrum for the random process is $S_{X X}(\omega)=\lim _{T \rightarrow \infty} \frac{E\left[\left|X_{T}(\omega)\right|^{2}\right]}{2 T}$.
b) Find cross-correlation function for the given cross power density spectrum $S_{X Y}(\omega)=\frac{8}{(\alpha+j \omega)^{3}}$ where $\alpha>0$ is a constant.

OR

10. a) Explain relationship between autocorrelation function and power spectrum.
b) Obtain autocorrelation function and power spectrum for white noise.

II B.Tech. II Semester Supplementary Examinations Nov/Dec 2018

Analog Communication

(Electronics and Communication Engineering)

II B.Tech. II Semester Supplementary Examinations Nov/Dec 2018

Complex Variables \& Special Functions

(Common to EEE and ECE)
Time: 3 Hours
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Evaluate $\int_{0}^{1} x^{5}\left(\log \frac{1}{x}\right)^{3} d x$
b) Separate $\log \sin (x+i y)$ into real and imaginary parts.
2. a) Prove that $\beta\left(m, \frac{1}{2}\right)=2^{2 m-1} \beta(m, m)$
b) If $\cosh (u+i v)=x+i y$ prove that $(i) \frac{x^{2}}{\cosh ^{2} u}+\frac{y^{2}}{\sinh ^{2} v}=1$ (ii) $\frac{x^{2}}{\cos ^{2} u}-\frac{y^{2}}{\sin ^{2} v}=1 \quad 7 \mathrm{M}$

UNIT-II

3. a) If $f(z)$ is a regular function of z, prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}$
b) Find the analytic function whose real part is $e^{x}\left\{\left(x^{2}-y^{2}\right) \cos y-2 x y \sin y\right\}$

OR

4. Find the analytic fuction $f(z)=u+i v$, if $u+v=\frac{2 \sin 2 x}{e^{2 y}-e^{-2 y}-2 \cos 2 x}$

UNIT-III

5. a) Evaluate, using Cauchy's integral formula $\oint_{C} \frac{\sin ^{2} z}{\left(z-\frac{\pi}{6}\right)^{3}} d z$, where C is the circle $|z|=1$
b) Find the Taylor's expansion of $f(z)=\frac{1}{(z-1)(z+1)}$ about the point $z=1$

OR

6. a) Evaluate $\int_{1-i}^{2+3 i}\left(z^{2}+z\right) d z$, along the line joining the points $(1,-1)$ and $(2,3)$
b) Find the Laurents series expansion of $f(z)=\frac{1}{(z-1)(z-2)}$ in the region

$$
1<|z|<2
$$

UNIT-IV

7. a) Evaluate $\oint_{C} \frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-1)^{2}(z-2)} d z$, where C is the circle $|z|=3$
b) Evaluate $\int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x$

OR

8. a) Find the sum of the residues of $f(z)=\frac{\sin z}{z \cos z}$ at its poles inside the circle $|z|=2 \quad 7 \mathrm{M}$
b) Use Rouche's theorem to show that the equation $z^{5}+15 z+1=0$ has one root in the disc $|z|<\frac{3}{2}$ and four roots in the annulus $\frac{3}{2}<|z|<2$

UNIT-V
9. a) Find the bilinear transformation which maps the points $z=1, i,-1$ onto $w=2, i,-2$
b) Prove that the tranformation $w=e^{z}$

OR

10. a) Prove that the tranformation $w=\sin z$
b) Find the bilinear transformation which maps the points $z=i, 1-1$ onto $w=1,0, \infty$

Code: 5G246

II B.Tech. II Semester Supplementary Examinations Nov/Dec 2018

Electrical Technology

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Explain the interconnection of two port network in series and parallel Configurations?
b) Obtain the relation for reciprocity and symmetry in terms of ABCD parameters.
2. a) Develop the Z-parameter and h-parameter equivalent circuits. Also express the Y-parameters in terms of Z-parameters.
b) Express the relation between Y-parameters and ABCD parameters. 4M

UNIT-II

3. a) Explain in detail about the transients in R-L series circuit with DC Excitation?
b) A 500 nF capacitor is connected in series with a $100 \mathrm{k} \Omega$ resistor and the circuit is connected to a 50 V d.c. supply. Calculate (i) the initial value of current flowing, (ii) the value of current 150 ms after connection?

OR

4. a) Briefly explain about transients in circuits?
b) Explain in detail about the transients in R-L-C series circuit with DC Excitation? 10M

UNIT-III

5. a) Classify and explain about stop band filters?

OR

6. a) Derive the design equations for Bridged T - type attenuator?
b) A π-section attenuator has a series resistance of 500Ω and shunt resistances of $2 \mathrm{k} \Omega$. Determine (i) the characteristic impedance, and (ii) the attenuation produced by the network?

UNIT-IV

7. a) A DC generator has an armature EMF of 100 V . When the useful flux per pole is 20 mWeb and the speed is 800 rpm . Calculate the generated EMF: (i) With the same flux and a speed of 1000 r.p.m. (ii) With a flux per pole of 20 mWeb and a speed of $900 \mathrm{r} . \mathrm{p} . \mathrm{m}$?
b) Explain different characteristics of DC shunt and series motors? 10M
8. a) Explain different types of DC generators?
b) Explain the importance and working of a three point starter used in dc motor?

UNIT-V

9. a) The following test results were obtained on a $4 \mathrm{kVA}, 200 \mathrm{~V} / 400 \mathrm{~V}, 50 \mathrm{~Hz}$ single phase transformer. The OC/SC Test results are as follows:
OC Test: 200 V 0.8 A 70 W (LV side)
SC Test: 20 V 10 A 60 W (HV side)
Calculate the efficiency at full load current, 0.8 lagging power factor.
b) Derive the EMF equation and the condition for maximum efficiency of a 1-phase transformer? 10 M OR
10. a) What are the important types of capacitor start induction motors? 6M
b) Explain briefly about the stepper motors? Write its applications?
Hall Ticket Number :

\square
Code: 5G344
R-15
II B.Tech. II Semester Supplementary Examinations Nov/Dec 2018Field Theory and Transmission Lines(Electronics and Communication Engineering)
Max. Marks: 70Time: 3 HoursAnswer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)*********
UNIT-I1. a) Define "Electric Field", "Electric Potential" and "Electric Flux Density" fromcharge and Explain.6M
b) A circular ring lying on $x-y$ plane having 5 cm radius is charged uniformly withthe total charge of Q Coulombs. Find Electric field intensity at a point 10 cmalong z - axis.

OR

2. a) Using Gauss's law derive the expression for electric field intensity and electric field density due to an infinite sheet of conductor of charge density $\rho_{\mathrm{s}} \mathrm{C} / \mathrm{m}^{2}$
b) Given the flux density $D=(16 / r) \cdot \cos (2 \theta) \mathbf{a}_{\boldsymbol{\theta}} \mathrm{C} / \mathrm{m}^{2}$, Find the total charge withinthe region $1<r<2 m, \quad 1<\varphi<2$ rad.

UNIT-II

3. a) Define the term polarization. With necessary explanations give the relation between the electric flux density and electric field intensity with respect to a dielectric medium.
b) The dielectric sphere $\left(\varepsilon_{r}=5.7\right)$ of radius 10 cm has a point charge 2 pC placed at its centre.
i) Calculate the surface charge density of the polarization charge on the surface of the sphere.
ii) The force exerted by the charge on a $-4 p \mathrm{p}$ point charge on the sphere.

OR

4. a) What is continuity equation and state its importance.
b) Find the capacitance of a 50 cm long coaxial cable, having conductors of 4 cm
and 2 cm diameters separated by a medium of relative permittivity 2.4 . Also
find the stored energy and field at a radius of 1.5 cm in the dielectric when 10 V
is applied

UNIT-III

5. a) With necessary mathematical expressions derive the magnetic field intensity due to finite and infinite lines.

$$
\begin{aligned}
& \text { b) A toroidal ring has } 200 \text { turns. The outer diameter of the ring is } 15 \mathrm{~cm} \text { with the } \\
& \text { inner diameter of } 12 \mathrm{~cm} \text {. Find the flux density if the current is } 8 \mathrm{~A}
\end{aligned}
$$

OR

6. a) Define and derive the Maxwell's curl equation involving Faraday's Law. Explain the concept of displacement current.
b) State and prove boundary equation for magnetic field between a dielectric and a dielectric medium

UNIT-IV

7. a) What is a Poynting Vector, Give the physical interpretation? Does the pointing theorem apply to static field? Explain.
b) In a medium characterized by $\sigma=0, \mu=\mu_{0}, \varepsilon_{o}$ and $E=20 \sin \left(10^{8} t-\beta z\right) \mathbf{a}_{y} \mathrm{~V} / \mathrm{m}$. Calculate β and H .

OR

8. a) Derive the expressions for reflection and transmission coefficients, when an perpendicularly polarized electromagnetic wave incidents obliquely on surface of a perfect dielectric
b) An EM wave travels in Free space with the electric field component $E_{s}=100$ $\mathrm{e}^{\mathrm{j}(0.866 y+0.5 z)} \mathbf{a x}_{\mathbf{x}} \mathrm{V} / \mathrm{m}$. Determine the
a) Ω and λ
b) The magnetic field component

UNIT-V

9. a) Derive the input impedance of the lossless transmission line. Evaluate Zsc and $Z_{o c}$.
b) Discuss impedance matching and discuss about the various matching technique.

OR

10. a) What is Smith Chart? Explain its important features.
b) An unknown load is connected to a 75Ω transmission line (lossless). Find the load that is connected if the location of the $1^{\text {st }}$ minima is at a distance of 0.25λ away from the load and SWR is found to be 4. Then what is load impedance \& load reflection coefficient
\square

II B.Tech. II Semester Supplementary Examinations Nov/Dec 2018
Pulse and Digital Circuits
(Electronics \& Communication Engineering)
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks) ******

UNIT-I

1. a) Derive the expression for the output of a high-pass circuit excited by exponential input and ramp for different time constants.
b) A 20 Hz symmetrical square wave whose peak to peak amplitude is 1 V is impressed upon a high -pass RC circuit whose lower $3-\mathrm{dB}$ frequency is 10 Hz . Calculate and sketch the output waveform for the first two cycles. What is the peak-to-peak output amplitude under steady-state conditions?

OR
2. a) Define following
i. Transmission Error
ii. Percentage tilt
iii. Attenuator.
iv. Over compensation
v. Linear wave shaping
vi. integrator
b) A square wave whose peak-to-peak value is 1 V extends $\pm 0.5 \mathrm{~V}$ with respect to ground. The duration of the positive section is 0.1 sec and of the negative section is 0.2 sec . if this wave form impressed upon an RC differentiating circuit whose time constant is 0.2 s , what are the steady-state maximum and minimum values of the output waveform? Prove that the area under the positive section equals that under negative section of the output waveform. What is the physical significance of the result?

UNIT-II

3. a) Give the circuits of different types of shunt clippers and explain their operation
with the help of their transfer characteristics.
b) State and prove clamping circuit theorem. Sketch the output waveform that you would expect from the circuit shown in figure.

4. a) Explain transfer characteristics of emitter coupled clipper and derive necessary equations.
b) Draw the transfer characteristics for the clipper circuit shown. Assume ideal Diodes.

UNIT-III

5. a) Explain and Derive the expression for frequency of oscillation of an Astable multi vibrator.
b) Design a collector coupled Astable multivibrator using NPN silicon transistors with $h_{f e}=40, r_{b b}=200$ supplied with $\mathrm{V}_{\mathrm{cc}}=10 \mathrm{~V}$ and circuit component values are $\mathrm{R}_{\mathrm{c}}=1.2 \mathrm{~K}$ and $\mathrm{C}=270 \mathrm{pF}$.

OR

6. a) Explain the operation of a Monostable multivibrator and derive for the pulse width with necessary waveforms \& circuits.
b) Design a symmetric collector-coupled astable multivibrator to generate a square wave of 10 kHz having peak-to-peak amplitude of 10 V where, h FE $\min =30, \mathrm{~V}_{\mathrm{CE}}($ sat $)=0.2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}($ sat $)=2 \mathrm{~mA}$

UNIT-IV
7. a) Define and derive the terms slope error, displacement error and transmission error.
b) In the transistor bootstrap circuit, $\mathrm{V}_{\mathrm{CC}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{BE}}=-15 \mathrm{~V}, \mathrm{R}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{E}}=15 \mathrm{~K} \Omega$, $R_{B}=150 \mathrm{~K} \Omega, C=0.05 \mu \mathrm{~F}$, and $\mathrm{C}_{1}=100 \mu \mathrm{~F}$. the gating waveform has a duration $\mathrm{Tg}=300 \mu \mathrm{~S}$. The transistor parameters are $\mathrm{h}_{\mathrm{fe}}=1.1 \mathrm{~K} \Omega, \mathrm{~h}_{\mathrm{re}}=2.5 \times 10^{-4} \mathrm{k} \Omega \mathrm{h}_{\mathrm{fe}}=$ $50, h_{\text {oe }}=1 / 40 \mathrm{k} \Omega$
a) Draw the waveforms of $I_{C 1}$ and V_{O}
b) What is the slope error of the sweep
c) What is the retrace time for C discharge completely?

OR

8. a) How is deviation of linearity expressed? What do you mean by sweep time and restoration time?
b) How a compensation circuit improves the linearity of a Bootstrap voltage time base generator? Discuss.

UNIT-V

9. a) Realize a NAND gate using DTL and TTL logic.
b) How pedestal is reduced in a gate circuit? Explain.

OR

10. a) What are the limitations of bidirectional sampling gates explain the operation of four diode sampling gate.
b) Explain about unidirectional diode sampling gate. Write its advantages and disadvantages.
