<u> </u>	de: 5C141	R-15		
Co	de: 5G141 II B.Tech. II Semester Supplementary Examinations March 20	21		
	Computer Organization	21		
	(Computer Science and Engineering)			
M		e:3H		
	Answer all five units by choosing one question from each unit (5 x 14 = 70)	Marks)		
		Marks	со	Bloon Leve
	UNIT-I			2010
a)	State the differences between encoder and multiplexer. Mention the role of these			
	components in the design of computers.	6M	CO1	L
b)	Given a 16 X 8 ROM chip with chip enable input, show the external connections necessary to construct a 128 X 8 ROM after determining the number of chips			
	required and a decoder logic.	8M	CO1	L
	OR			
a)	Represent 67 in 1's and 2's complement 8-bit binary number system. Prove that			
	the resultant of the arithmetic operation (67-67) is different in these two types of			
	representation schemes.	8M	CO1	l
b)	Explain the format of floating-point numbers in computer organization with	GM	004	
	suitable examples.	6M	CO1	l
a)	Illustrate the sequence of operations carried out in the transfer of contents from			
,	a register to another with the signals CLOCK and LOAD.	6M	CO2	L
b)	Design a 4 bit binary adder/subtractor with full adder as a basic building block.			
	Describe its functionality	8M	CO2	l
	OR			
a)	Enumerate the sequence of micro operations for the following memory- referencing instructions: LDA, BSA, BUN and ISZ.	014	000	
b)	Write down the sequences of operations effected by a processor whenever it is	8M	CO2	L
D)	interrupted by an Input/Output device.	6M	CO2	L
	UNIT–III		001	
a)	Write brief notes on the control address register and micro program sequencer.	6M	CO3	l
b)	What is the significance of address sequencer in micro programmed control unit?			
	With a neat sketch of block diagram, explain the process of determining the next			
	micro address.	8M	CO3	
2)	OR Describe the format of microinstructions and the associated bit fields.	8M	000	I
a) b)	Compare and contrast between hardwired and micro programmed control units.	6M	CO3 CO3	
5)	UNIT-IV		003	
a)	What is divide overflow? Explain any one method by which this can be handled			
,	in the hardware implementation of division algorithm.	8M	CO4	I
b)	With a schematic explain the use of 2-bit by 2-bit array multiplier in the	_		
	implementation of Booth's multiplication algorithm.	6M	CO4	L

Code: 5G141

8.	a)	Depict the addition and subtraction of floating point numbers using an appropriate flow chart and explain the data flow.	8M	CO4	L2
	b)	Narrate the steps involved in the multiplication of floating point numbers with a suitable example.	6M	CO4	L1
		UNIT-V			
9.	a)	Compare and contrast between the source-initiated and destination initiated data			
		transfer using handshake methods.	8M	CO5	L2
	b)	State the requirements in processor architecture to support Direct Memory Access.	6M	CO5	L2
		OR			
10.	a)	What are the impacts of branching instructions in the pipelined architecture?			
		Discuss the strategies to mitigate these problems.	8M	CO5	L2
	b)	Write brief notes on memory interleaving technique used in vector processors.	6M	CO5	L1

	па										
L	Cod	de: 5G441									
		II B.Tech. II Semester Supplementary Examinations March 2021									
Database Management Systems											
		(Common to CSE & IT)									
	Mo	ax. Marks: 70 Time: 3 Ho									
		Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)									
		UNIT-I									
1.	a)	List four significant differences between a file processing system and a DBMS.									
	b)	Explain different types of database users and write the functions of DBA?									
		OR									
2.	a)	Explain different types of database users and write the functions of DBA?									
	b)	Discuss about the Levels of Abstraction in a DBMS									
		UNIT-II									
3.	a)	Discuss about the logical database design?									
	b)	Explain about different types of integrity constraints?									
		OR									
4.		Distinguish strong entity set with weak entity set? Draw an ER diagram to illustrate w	veak								
		entity set?									
		UNIT–III									
5.		What are Correlated Queries how they are applied in SQL?									
		OR									
6.		What are Stored Functions? Explain with one example?									
-		UNIT-IV									
7.		Give an example of a relation schema R and a set of dependencies such that R is in BCI but is not in 4NF.	NF								
		OR									
8.		Define functional dependencies. How are primary keys related to FDs?									
0.		Define functional dependencies. Now are primary keys related to PDS?									
		UNIT-V									
9.		Discuss about the dynamic index structure with one example?									
0.		OR									
0.	a)	Briefly discuss the AICD prosperities of transaction.									
0.	aj										

b) Explain Transaction Support in SQL.

Hall Ticket Number :

	C	ode: 5G142	R-15		
		II B.Tech. II Semester Supplementary Examinations March 202	21		
		Design and Analysis of Algorithms			
		(Common to CSE & IT)	0.11		
	Ν	Time Answer all five units by choosing one question from each unit (5 x 14 = 70 N	e: 3 Ho	Urs	
			Marks	со	Blo Lo
		UNIT–I			
١.		Explain briefly the Mathematical analysis of recursive and non-recursive algorithms.	14M	1	
2.		OR Explain briefly Big oh Notation, Omega Notation and Theta Notations. Give Examples.	14M	1	
		UNIT-II	14101	I	
3.	a)	What is divide and conquer strategy and explain the binary search with suitable			
-	- 7	example.	7M	2	
	b)	Apply quick sort to sort the list E,X,A,M,P,L,E in alphabetical order. Generate the			
		tree of the recursive calls made.	7M	2	
		OR			
1.	a)	Solve the Knapsack Problem where m=10, n=4, P= $(40,42,25,12)$, W= $(4,7,5,3)$	7M	2	
	۲	using greedy algorithm.	7 171	Ζ	
	b)	What is job sequencing with deadline problem? Let $n=5$, profits = $(10,3,33, 11,40)$, deadlines= $(3,1,1,2,2)$ respectively. Find the optimal solution using greedy algorithm.	7M	2	
			7.00	-	
5.		Explain optimal binary search tree problem with the help of an example using			
		dynamic programming.	14M	3	
		OR			
5.	a)	Solve the all pair shortest path problem using dynamic programming for the diagraph			
		with the following weight matrix: $\begin{bmatrix} 0 & 2 \\ 6 & 0 \\ \infty & \infty & 1 \end{bmatrix}$			
		$\begin{array}{c} 60 & 04 \\ \infty \\ \infty \\ \end{array}$			
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7M	3	
	b)	Develop a pseudo code for all pair shortest path problem using dynamic programming.			
			7M	3	
		UNIT–IV			
7.	a)	Explain the backtracking solution to solve 8-queens problem.	7M	4	
	b)	Develop the pseudo code for 8-queens problem using backtracking algorithm.	7M	4	
		OR			
3.		Solve Travelling Salesperson Problem using Branch and Bound algorithm for the			
		given instance:			
		$\begin{array}{c} \infty 257\\ 2 \infty 83 \end{array}$			
		$\begin{array}{c} 2 & \infty & 8 & 3 \\ 5 & 8 & \infty & 1 \end{array}$	4 4 5 4	4	
		731∞	14M	4	
).	a)	UNIT–V Using an example prove that satisfiability of boolean formula in 3- Conjuctive			
	u)	normal form is NP-Complete.	7M	5	
	b)	What does Nondeterministic Algorithm mean? Distinguish between deterministic			
	. /	and nondeterministic algorithm in design and analysis of algorithm?	7M	5	
		OR			
).		Discuss the need of approximation algorithms and how they can be used for NP			

C	ode	Ficket Number :	R-15		
0	ouc	II B.Tech. II Semester Supplementary Examinations March 2	2021		
		Formal Languages and Automata Theory			
		(Computer Science and Engineering)			
	Ma		ime: 3		irs
		Answer all five units by choosing one question from each unit ($5 \times 14 = 7$	U Mark	SJ	
			Marks	со	Bloo Le
		UNIT–I			LC
1.	a)	Design FA to check whether given decimal number is divisible by three.	7M	1	
	b)	Differentiate between DFA and NFA with suitable illustration.	7M	1	
		OR			
2.	a)	Design a Moore machine to determine the residue mod 5 for each binary			
		string treated as integer?	7M	1	
	b)	Give Moore machine for $=\{0,1,2\}$, print the residue modulo 5 of input			
		treated as a ternary number.	7M	1	
		UNIT–II			
3.	a)	Discuss applications of regular expressions and finite automata	7M	2	
	b)	Prove L={a ^p / p is a prime} is not regular.	7M	2	
		OR			
4.	a)	Design a FA from given regular expression 10+(0+11)0*1	7M	2	
	b)	Construct Finite automata to accept the regular expression			
		(0+1)*(00+11)(0+1)*	7M	2	
_	,			0	
5.	a)	Differentiate between right linear and left linear grammar with suitable examples.	7M	3	
	b)	Convert the following CFG to GNF.			
		A1→A2A3 A2→A3A1/b			
		A2→A3A1/b A3→A1A2/a	7M	3	
		OR	,	Ŭ	
6.	a)	Define Greibach Normal Form and Convert the given CFG to GNF			
0.	u)	S→ABA			
		A→aA/			
		B→bB/	7M	3	
	b)	Discuss about minimization of context Free Grammar.	7M	3	
	,	UNIT–IV			
7.	a)	Construct PDA for the language $L = \{a^n b^{2n}/n \ 1\}$	7M		
	b)	Construct PDA for the given CFG			
		S→OBB			
		B→OS/ 1S/ 0			
		Test whether 010 ⁴ is acceptable by this PDA.	7M	3	
		OR			
8.	a)	Design PDA for the language that accepts strings with $n_a(w) < n_b(w)$ where w			
		belongs to (a+b)*	7M	4	
	b)	Design a PDA for the following grammar.			
		S→0A			
		A→0AB/1	714	4	
			7M	4	
Э.	a)	UNIT-V Explain the types of Turing Machines	7M	E	
J.	a) b)	Design Turing Machine to recognize an arbitrary string divisible by 4 from	/ IVI	5	
	5)	$= \{0, 1, 2\}.$	7M	5	
		OR		-	
_	a)	Explain the differences between PDA and TM.	7M	5	
).	~,		7 1 1 1	0	
).	b)	Explain the properties of recursive and recursive enumerable languages.	7M	5	

Hall ⁻	Ticke	et Number :																
Code	e: 50	G144											-	R	-15			
	II E	3.Tech. II Se	eme	ester	Sup	ople	eme	nta	ry E>	kam	nina	tions	s Marc	h 202	1			
			C)bje					-		mir	g						
Мах	. Mc	ırks: 70			(C	omn	non	to C	SE 8	<)				Time: 3	3 Hours			
-		ll five units b	by ch	noos	ing	one	-		n fror	n eo	ach	unit	(5x14					
								*****	<u> </u>									
1.	UNIT–I 1. a) Explain relational operators in java.									5M								
	b)	Java does not support goto statement. Why?									4M							
	c)	Explain garb		••	•				,					5N				
			-					OF	R									
2.	a)	Explain the	OOP	s co	ncep	ts: E	ncap	sulat	ion, l	Polyı	morp	hism	and Ab	stractio	n 7M			
	b)	Explain the	java	buzz	wor	ds.									4M			
	c)	What is the	diffe	rence	e bet	ween	n Stri	ng ar	nd St	ringE	Buffe	r obje	ects?		3M			
							ι	JNIT	-11									
3.	a)	Explain met	hod	overr	iding	with	an e	exam	ple.						7M			
	b)	Explain the different levels of access protection in java.								7M								
								OF	R									
4.	a)	a) Explain the difference between class and interface with an example each.								7M								
	b)	Explain in d package wit						ating	, def	ining	, imp	ortin	g and a	ccessin	g a 7M			
		package wit	ii Sui	lable	ска	mpie		JNIT	_111						7 101			
F	c)	Evoloin the	oro 01	ion	n d u						otion	with		مام	714			
5.	a) b)	Explain the creation and usage of your own exception with an example. Explain thread synchronization with an example.										7M 7M						
	0)		au s	ynch		allon	vvitii			pie.					7 101			
6.	a)	Write the dif	ferer	nces	betw	een	multi			and	mult	i tasł	king.		3M			
) b)	Write short r							•				0		4M			
	c)	Explain the	creat	ion c	of thr	ead ι	using	Run	nabl	e inte	erfac	e witl	h an exa	ample.	7M			
							U	INIT-	-IV									
7.		Explain in de	etail	any f	our	lass	es of	the	java.	net p	acka	ige.			14M			
		·						OF				•						
8.	a)	Write the dif	ferer	nces	betw	een	apple	et an	d an	appl	icatio	on pro	ogram.		7M			
b) Write an applet to display the current date and time.								7M										
							l	JNIT	-V									
9.	a)	Describe de	lega	tion e	event	moc	lel								5M			
	b)	Write the lim	nitatio	ons c	of AV	/T co	mpo	nent	S						4M			
	c)	Write a java	prog	gram	to ill	ustra	te Te	extEv	ent.						5M			

OR