Formal Languages and Automata Theory

(Computer Science and Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Define Alphabets, Strings and Languages with examples?

6M CO1 L1
b) Construct DFA equivalent to the following NFA. Show the acceptance of the string 00011 on both the Fas. Assume that q 0 is the start state and q3 is final state?

	0	1
$q 0$	$\{q 0, q 1\}$	$\{q 0\}$
$q 1$	-	$\{q 2\}$
$q 2$	-	$\{q 3\}$
$q 3$	-	-

OR

2. a) Compare and contrast Moore Machine with Melay Machine?
b) Design a DFA that accepts the language over the alphabet, $\Sigma=\{0,1,2\}$ where the decimal equivalent of the language is divisible by 3 ?

9M CO1 L6

UNIT-II

3. a) Explain the closure properties of regular languages?
$6 \mathrm{M} \mathrm{CO2}$ L2
b) Construct a Finite Automata for the regular expression?

$$
(0+1)(1+10)^{*}
$$

8M CO2 L5

OR

4. a) Define a Regular expression. Find regular expressions for the following languages over the alphabet $\{a, b\}$.
i. All strings of odd length
ii. All strings that end with either ab or b

10M CO1 L5

5M CO1 L5
b) Explain minimization of CFG with the following example?

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{aA} \mid \mathrm{aBB} \\
& \mathrm{~A} \rightarrow \mathrm{aAA} \mid \epsilon \\
& \mathrm{B} \rightarrow \mathrm{bB} \mid \mathrm{bbC}
\end{aligned}
$$

$$
\mathrm{C} \rightarrow \mathrm{~B} \quad 8 \mathrm{M} \mathrm{CO3} \quad \mathrm{~L} 2
$$

OR
6. a) Construct a FA recognizing the following regular grammar?

$$
\mathrm{S} \rightarrow \mathrm{aS} / \mathrm{bA} / \mathrm{b}
$$

$$
\mathrm{A} \rightarrow \mathrm{aA} / \mathrm{bS} / \mathrm{a} \quad 6 \mathrm{M} \text { co3 L5 }
$$

b) Convert the given CFG to CNF?

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{aAs} / \mathrm{a} \\
& \mathrm{~A} \rightarrow \mathrm{SbA} / \mathrm{SS} / \mathrm{ba}
\end{aligned}
$$

8M CO3 L6

UNIT-IV

7. a) Write and explain about Push Down Automata? 4M CO4 L1
b) Construct a PDA that accepts the language $L=\left\{w c w^{R} / w \in\{a, b\}\right\}$? 10 M CO4 $L 5$

OR

8. a) Describe equivalence of CFL and PDA with appropriate example? 6M CO4 L2
b) Design PDA to accept the following CFG?

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{AA} / \mathrm{a} \\
& \mathrm{~A} \rightarrow \mathrm{SA} / \mathrm{b} \\
& \quad \text { UNIT-V }
\end{aligned}
$$

$$
\mathrm{A} \rightarrow \mathrm{SA} / \mathrm{b} \quad 8 \mathrm{M} \mathrm{CO4} \mathrm{L6}
$$

9. a) Write short notes on Liner Bounded Automaton?

4M CO5 L4
b) Design Turing's Machine to accept the language $L=\left\{a^{n} b^{n} c^{n} /\right.$ $n \geq 1\}$. Also give the graphical representation and Instantaneous description (ID) for the import "aabbcc"?

10M Co5 L6
OR
10. a) Write and explain about Counter machines?

6 M CO5 L2
b) Design a TM for $L=\left\{0^{n} 1^{n} \mid n \geq 1\right\}$

8M CO5 L6

