	ار م	e: 5C 441 R-15	
C	od	e: 5G441 Il B.Tech. II Semester Supplementary Examinations May 2017	
		Database Management Systems	
		(Common to CSE & IT)	
		x. Marks: 70 Time: 3 Hou	vrs
		Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)	
1.	a)	Identify the main components in a DBMS and explain what they do.	71
	b)	What are the advantages of DBMS? Explain.	71
		OR	
2.	a)	What are five main functions of a database management administrator?	71
	b)	Explain various storage manager components and its functions.	71
		UNIT–II	
3.		Draw ER diagram for the company database incorporating all the ER notations with	14
		explanation.	••
	、	OR	
4.	a)	What are the steps in designing a database?	71
	b)	With examples, explain enforcing integrity constraint.	71
_	、	UNIT-III	
5.	a)	Consider the following tables: Employee (Emp_no, Name, Emp_city)	
		Company (Emp_no, Company_name, Salary)	
		i. Write a SQL query to display Employee name and company name.	7
		ii. Write a SQL query to display employee name, employee city ,company name and	
		salary of all the employees whose salary >10000	
		iii. Write a query to display all the employees working in 'XYZ' company.	
	b)	Briefly discuss about aggregate functions. Explain any three aggregate functions.	71
		OR	
6.	a)	Briefly discuss about virtual table.	71
	b)	With an example explain trigger and its needs.	71
-	-)		
7.	a)	Compare 3NF and BCNF with a suitable example.	71
	b)	What is dependency preserving for decomposition? Explain why it is important. OR	71
8.	a)	Suppose you are given a relation $R = (A,B,C,D,E)$ with the following functional	
0.	a)	dependencies: { $CE \rightarrow D$, $D \rightarrow B$, $C \rightarrow A$ }.	
		i. Find all candidate keys.	
		ii. Identify the best normal form that R satisfies (1NF, 2NF, 3NF, or BCNF).	7
		iii. If the relation is not in BCNF, decompose it until it becomes BCNF. At each step,	
		identify a new relation, decompose and re-compute the keys and the normal	
	F)	forms they satisfy.	7
	b)	Explain 1 st normal form(1 NF) with example.	71
`	c)	UNIT-V Evolution the distinctions between the terms Serial schedule and Serializable schedule	71
9.	a) b)	Explain the distinctions between the terms Serial schedule and Serializable schedule.	71
	b)	Why does a DBMS interleave current transactions? OR	71
Э.	a)	Briefly discuss the AICD prosperities of transaction.	71
	b)	What are the main difference between ISAM and B+ tree indexes?	71
	~)	***	, 1

Hall	Tick	et Number :										
Code		R-15										
Code	2: 5G	II B.Tech. II Semester Supplementary Examinations May 2019										
		Formal Languages and Automata Theory										
		(Computer Science and Engineering)										
-		arks: 70 Ver all five units by choosing one question from each unit (5 x 14 = 70 Marks)	Urs									
		UNIT-I										
1.	a)	Design a DFA that accepts the language $L(M)=\{W/W \in \{a, b\}^*\}$ and W does not contain 3 consecutive b's.	7M									
	b)	Construct a Moore machine to determine the residue mod 3 for each binary string treated as a binary integer.	7M									
		OR										
2.	a)) Develop deterministic finite automata accepting the language given over the alphabet {0, 1}. L= {the set of all strings such that every block of five consecutive										
		contains at least two 0's}.	7M									
	b)	Discuss about minimization of FSM and equivalence between two FSMs. UNIT-II	7M									
3.	a)	Construct NFA with moves for the regular expression (0+1)*.	7M									
	b)	Prove or disprove that the language L given by $L = \{ a^m b^n / m n, m and n are$										
		positive integer} is regular.	7M									
4	-)	OR Occurrent EA (construction of the table										
4.	a)	Construct FA for regular expression $0*1 + 10$.	7M									
	b)	Discuss about closure properties of regular sets.	7M									
5.	a)	UNIT–III Construct a regular grammar for the regular expression a*b(a+b)*.	7M									
0.	b)	Convert the given CFG to CNF	7 1 1									
	0)	S→aAs/ a										
		A→SbA/SS/ba	7M									
		OR										
6.		Convert the given CFG to GNF										
		S→ABA A→Aa/	14M									
7.	a)	Design a PDA for accepting a language L={ a^nb^n/n 1}	7M									
	b)	Discuss the procedure for conversion of CFG to PDA	7M									
	,	OR										
8.	a)	Design PDA for the following grammar										
		S→0A										
		A→0AB/1 B→1	7M									
	b)	Construct PDA for the language L= $\{a^nb^{2n}/n \ 1\}$	7M									
	5)		7 111									
9.	a)	Write short notes on decidability of problems in detail?	7M									
	b)	Construct Turing Machine for language consisting of strings having any number of 0's and only even number of 1's over the input set {0, 1}.	7M									
10.	a)	OR Discuss the procedure for constructing items in LR(0) grammar with illustration.	7M									
	b)	Analyze Universal Turing Machine and Linear Bounded Automata.	7M									
	,	****										

Hall Ticket Number :														
R-15										R-15				
C	Code: 5G144 II B.Tech. II Semester Supplementary Examinations May 2019													
	Object Oriented Programming													
	(Common to CSE & IT)													
r	Max. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)													
								*****	1					
1.	a)	UNIT–I												
	b)	Explain Object O	riente	d Pr	ograr	nmin	ig cor	ncept	s.					
							0	R						
2.	a)	List and classify t	he op	perat	ors u	sed i	n java	a. Ex	plain	any	two c	opera	tor clas	sifications.
	b)	Define recursion recursion.	. Wri	ite a	java	a pro	ogram	n to	find	the	facto	rial c	of a giv	ven number using
							UNIT							
3.	a)	What is meant by	meth	nod c	overri	ding	? Illus	strate	with	an e	xamp	ole.		
	b)	How packages ar	e imp	oorte	d? E	xplaiı			able	exam	ple.			
4	-)	What are the use	(f				0				:	1 h	table av	
4.	a) b)	What are the use			•					•			lable ex	kampies.
	b)	How to find packa	ages	anu	ULAC			•	kage]	<u> </u>	piairi	•		
5.	a)	Explain isAlive() a	and ic	oin()	meth									
	b)	How to create ow		0						h ex	ampl	e.		
	,			•			0	R						
6.	a)	Explain suspendi	ng, re	esum	ing a	ind st	toppiı	ng th	eads	5.				
	b)	Write the benefits	of E	хсер	tion ł	hand	ling.							
							UNIT	–IV]					
7.	a)	List the collection	inter	faces	s. De	scrib	e Lis	t inte	face					
	b)	Explain applet life	e cycl	e wit	h sui	table								
o	c)	With suitable eve	mnlo	ovol	ain S	tring	0 Toko							
8.	a) b)	With suitable exa Describe the wind	•	•		•	IUKE	nizei						
	b)	Describe the wind		unua			UNIT	_v]					
9.	a)	Define an Event.	List a	and b	riefly				vent	lister	ner in	iterfa	ces.	
	b)	What are the limit	ation	s of .	AWT	?								
							0							
10.	a)	Write a java prog			oleme	ent m	nouse	eve	nts.					
	b)	Describe URL co	nnect	tion				τ τ						
							*	* *						

Ha	all 7	Ficket Number :													.	_
Cod	de:	5G141													R-1	5
		ll B.Tech. II S	em									ions	s Ma	y 20	19	
						-	er O	-				,				
Mc	хr	Marks: 70	(Cc	omp	uter	SCIE	ence	e and	d Eng	gine	ering	g)		Tin	ne:3	Hours
		nswer all five units	s by o	choc	osing				fron	n ead	ch ui	nit (:	5 x 14			
							*****]						
1.	a)	Explain various c	ompo	onent	ts of	Com	I	UNIT s?	-1							4M
	⊆, b)	List various interc	•				•		olain i	ts us	e in r	nultir	oroces	ssors	?	10M
	2)					, o con c	0	-			•	r			•	
2.	a)	How to represent	nega	ative	num	bers	In co	mput	er?							7M
	b)	Explain about 2's	-					-		ing th	e fixe	ed po	oint nu	mbers	s?	7M
			-			-	l	JNIT	-11]		-				
3.	a)	What is an arithm	netic	micro	o ope	eratio	n? E>	plair	with	exar	nples	5				7M
	b)	Write short notes	on th	ne fol	lowiı	ng:										
		i) Register transfe	er lan	iguag	je											
		ii) Reduced Instru	uctior	n set	com	puter										7M
							O									
4.	a)	Explain in detail a									ructi	on se	equen	cing.		7M
	b)	Discuss about dif	ferer	nt type	es of	addi	r	•		י ו						7M
5.	a)	What is meant by	mic	onro	aran	nmina	I	JNIT-		nicro	nroc	arami	mod c	ontro	12	7M
J.	a) b)	Explain about cor		•	•	-		•								7M
	5)				ory n	n u n	01 01		amm			rorge	annzat			,
5.	a)	List the advantage	aes a	and c	lisad	vanta			icro I	orogr	amm	ned c	contro	l unit	over	
	,	hardwire control	-				5			0						7M
	b)	What are micro-s	ubro	utine	s? E	xplair	า.									7M
							ι	JNIT-	-IV							
7.		Show the step b	•	•	•		•			•		•				
		following binary r hold signed numb				-		-	-					-		14M
							O				e o p c		9 0710			
3.	a)	Draw the flow cha	art fo	r divi	sion	algor										7M
-	b)	Explain the different				•			in th	e usa	age c	of Ca	che m	nemor	rv.	7M
	,	·			0		·	JNIT-			0				,	
9.	a)	Describe in detail	abo	ut Inp	out C	utput	I			L						7M
	b)	What is DMA? De	escrit	be ho	w D	MA is	suse	d to t	ransf	er da	ta fro	om pe	eriphe	rals.		7M
							O	R								
).	a)	Explain instructio	n pip	elinir	ıg.											7M
	b)	What is branch ha	azaro	d? De	escril	be the	e met	thod	for de	aling	, with	the	branc	h haz	zard?	7M
							**	*								

Hall	Tick	et Number :								
Code	• 5G	142 R-15								
Couc	. 50.	II B.Tech. II Semester Supplementary Examinations May 2019								
		Design and Analysis of Algorithms								
		(Common to CSE & IT)								
		arks: 70 Time: 3 Ho wer all five units by choosing one question from each unit (5 x 14 = 70 Marks)	Urs							

	-)		714							
1.	a) b)	Explain in brief about Asymptotic notations with examples.	7M 7M							
	b)	Explain the Performance Analysis of the algorithm. OR	7M							
2.	a)	Define Time and Space Complexity, and calculate the time space complexity for								
	- 1	addition of two matrices.	7M							
	b)	Explain how Time Complexity is calculated. Give an example.	7M							
		UNIT–II								
3.	a)	Explain the general method of Divide and Conquer.	7M							
	b)	Give the Quick Sort algorithm and analyze the efficiency.	7M							
	、	OR								
4.	a)	Explain the merge sort algorithm with an example and also draw the tree structure of the recursive calls made.	7M							
	b)	What is the solution generated by the function Job Sequence when n=5								
	,	(p1,p2,p3,p4,p5)=(20,15,10,5,1), (d1,d2,d3,d4,d5)=(2,2,1,3,3)?	7M							
		UNIT–III								
5.	a)	Explain about Reliability Design.	7M							
	b) Find the optimal solution for the Knapsack instance $p_{-7} M_{-15}(p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{5}, p_{7})_{-}(10, 5, 15, 7, 6, 18, 2)$ and									
		n=7,M=15(p1,p2,p3,p4,p5,p6,p7)=(10,5,15,7,6,18,3) and (w1,w2,w3,w4,w5,w6,w7)=(2,3,5,7,1,4,1) by using dynamic programming.	7M							
		OR								
6.	a)	Solve the following instance of OBST problem								
		Identifier set = (a1,a2,a3,a4)								
		P=(1/20,1/5,1/10,1/20) Q=(1/5,1/10,1/5,1/20,1/20).	7M							
	b)	Discuss all pairs shortest path problem with an example.	7M							
7	2)	UNIT-IV								
7.	a)	Write an algorithm for 8 Queen's problem using backtracking and explain with an example.	7M							
	b)	Draw the portion of state space tree generated by sum of subsets problem for a								
	·	set of integers N= (12,1,50,3,20,8) whose sum is exactly equivalent to 44 by back								
		tracking algorithm.	7M							
0	2)	OR Consider the TSD instance by the cost matrix								
8.	a)	Consider the TSP instance by the cost matrix 11 10 9 6								
		8 7 3 4								
		8 4 4 8								
		11 10 5 5								
		6 9 5 5								
		Solve the problem by applying LCBB.	7M							
	b)	Describe the Branch and Bound technique. How the Branch and Bound technique can be used to solve 0/1 Knapsack problem?	7M							
			TIVI							
9.	a)	Explain the relationship between P and NP.	7M							
-	,	Show the job sequencing with deadlines problem is NP-hard.	7M							
		OR								
10.		Explain Cook's theorem in detail	14M							

		Dage	1 of 1							