R-15 II B.Tech. II Semester Supplementary Examinations December 2022 Object Oriented Programming (Common to CSE & IT) Max. Marks: 70 Time: 3 Hou Answer any five full questions by choosing one question from each unit (5x14 = 70 Mark	(S)
II B.Tech. II Semester Supplementary Examinations December 2022 Object Oriented Programming (Common to CSE & IT) Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x14 = 70 Mark	s)
Object Oriented Programming (Common to CSE & IT)Max. Marks: 70Time: 3 Hou Time: 3 Hou Answer any five full questions by choosing one question from each unit (5x14 = 70 Mark	s)
Max. Marks: 70 Time: 3 Hou Answer any five full questions by choosing one question from each unit $(5x14 = 70 \text{ Mark})$	s)
Answer any five full questions by choosing one question from each unit $(5x14 = 70 \text{ Mark})$	xs)
	-
	BL
Marks CC	
UNIT–I 1. Explain different types of control statements available in Java with examples. 14M	1 2
 Explain different types of control statements available in Java with examples. 14M OR 	1 2
2. a) List and explain the java buzz words. 8M	1 1,2
b) Explain the importance of byte code in java programming 6M	1 2
	1 2
3. a) Explain abstract classes with an example. Compare final and abstract modifiers 7M	2 3
,	2 3
OR	-
4. Explain the process of creating and accessing packages with suitable	
example programs. 14M	2 3
UNIT–III	
5. a) What is the difference between checked and unchecked exception? Write	
the code segments for each type. 7M	3 3
b) Explain "throw" and "throws" keywords in Java 7M	3 2
OR 6. a) Explain Thread life cycle. 7M	3 2
b) Illustrate user defined exceptions with an example. 7M	3 2 3 3
	5 5
7. a) List the collection interfaces. Describe List interface. 7M	4 3
b) Explain applet life cycle with suitable program. 7M	4 2
OR	4 Z
8. a) What is the need of SortedSet interface? Explain. 10M	4 3
b) Briefly explain about card layout. 4M	
	4 2
9. a) Explain the JApplet, JFrame and JComponent. 9M	5 2
b) Describe InetAddress in networking. 5M	
OR	5 3
10. a) Explain about inner classes. 6M	5 0
	5 2 5 2
 b) Explain in detail about Buttons in "javax.swing" package. 8M *** 	5 3

	Hall Ticket Number :						
	Code: 5GC42					R-15	
	II B.Tech. II Seme	Prob	ability & St	atistics	ns Decemt	oer 2022	
	Max. Marks: 70 Answer any five full que.	·	non to CE, N osing one qu		each unit (5x	Time: 3 Hou 14 = 70 Marks	
			UNIT–I			Marks	CO BL
1.	If P(A) = $1/4$, P(B) = $1/4$			nd P(A/ B),	P(B/A), P (,	4 10
	and P (A $/B'$).		OR			14M	1 L2
2.	State and prove Baye's t					14M	1 L2
3.	Ten coins are throw sime heads (ii) six heads		•	bility of getti	ng at least (i) seven 14M	2 L1
4.	If the probability of a ba chance that out of 2000 i			•			2 L4
5.	If we can assert with 95% of the sample.		JNIT–III kimum error is	s 0.05 and P	is 0.2. Find t	he size 14M	3 L2
6.	Find 95% confidence limit which the following samp			•		from 14M	3 L2
7.	A random sample of 10 bo 107, and 100. Do these da	bys had the foll	assumption c				4 L4
8.	A random sample of 100 of 71.8 years. Assuming seem to indicate that the level of significance.	g a populatio	n standard d	eviation of 8	.9 years, do	bes this	4 L4
9.	The measurements of the Assuming that both samp 10% significant level, Tes	e output of two bles have beer	n obtained fro	m the norma	l populations	at	
	Unit-A 14.1	10.1	14.7	13.7	14.0]	
	Unit-B 14.0	14.5	13.7	12.7	14.1	14M	4 L4
	· I	1	OR				
10.	4 coins were tossed 160	times and the No, of Heads Frequency	following res 0 1 2 17 52 54	3 4	ained,		
	Under the assumption t 0,1,2,3,4 heads and test	hat coins are		•	cted frequer	ncies of 14M	4 L4

	ł	Hall Ticket Number :]
	С	ode: 5G142	R-1	5]
		II B.Tech. II Semester Supplementary Examinations Decem	nber 202	2	
		Design and Analysis of Algorithms			
	,	(Common to CSE & IT) Max. Marks: 70	Time 2	Llours	
		Nax. Marks. 70 Answer any five full questions by choosing one question from each unit (5	Time: 3 5x14 = 70/		
	,	********			
			Marks	CO	Blooms Level
		UNIT–I			
1.	,	Write performance analysis of an algorithm	7M		L2
	b)	Explain the differences between an algorithm and pseudocode	7M	CO1	L2
•	、	OR		004	
2.	a)	How to validate an algorithm. Explain	7M		L5
	b)	How to design an algorithm. Explain	7M	CO1	L5
		UNIT–II			
3.	a)	Explain the average case analysis of Quick sort in detail	10M	CO2	L2
	b)	Write the best case analysis of quick sort	4M	CO2	L2
		OR			
4.	a)	Explain the differences between divide and conquer and greedy method	7M	CO2	L2
	b)	What are the applications of divide and conquer	7M	CO2	L4
5.	\sim	UNIT-III Explain the features of dynamic programming	7M	CO3	L2
5.	a) b)	Show the general procedure of dynamic programming	7M	CO3	L2 L4
	0)	OR	7 1 1 1	000	L4
6	a)	Write the general method of dynamic programming	7M	CO3	L2
0.	с, b)	Explain in detail Matrix chain multiplication	7M	CO3	L2
	2)				
		UNIT–IV			
7.	a)	List the advantages of backtracking method	7M	CO4	L1
	b)	Write the general method of back tracking	7M	CO4	L4
		OR			
8.		Write in detail Travelling sales person problem and discuss how to solve		004	1.4
		by using branch and bound method	14M	CO4	L4
		UNIT–V			
9.	a)	How are P and NP problems related	7M	CO5	L4
	b)	Compare NP hard and NP Completeness	7M	CO5	L4
		OR			
10.	a)	Briefly explain the classes NP hard and NP complete	7M	CO5	L2
	b)	Explain the satisfiability problem	7M	CO5	L2

	Hall Ticket Number :			_
	Code: 5G143	R-1	5	
	Il B.Tech. II Semester Supplementary Examinations Decemb Formal Languages and Automata Theory (Computer Science and Engineering) Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x	Time: 3	Hours	_
		Marks	со	Blooms Level
1. a) b)		4M	1	L4
	OR OR	10M	1	L5
2. a)	Construct a Moore machine to determine the residue mod 3 for each binary string treated as a binary integer. Convert the resultant to Mealy machine?	, 10M	1	L5
b)		4M	1	= L5
	UNIT–II			
3. a) b)		6M	2	L1
	Atout At			
	, OR	8M	2	L4
4. a)	What is pumping lemma? Write the applications of Pumping Lemma?	4M	2	L1
b)	Construct NFA for the regular expression: 10+(0+11)0*1 UNIT-III	10M	2	L5
5. a)	Differentiate Leftmost Derivation and Rightmost Derivation with an example?	4M	3	L5
b)	Find Right Linear Grammar for the following FA?	10M	3	L3

Page **1** of **2**

6.	a)	Give the CFG for "The set of all strings of balanced parenthesis"?	6M	3	L3
	b)	Convert the following grammar into CNF?			
		S aAD			
		A aB/bAB			
		B b			
		D d.	8M	3	L6
		UNIT-IV			
7.	a)	Write a short note on DPDA and DCFL?	4M	4	L3
	b)	Construct the equivalent PDA for the following CFG?			
		S 0A			
		A 0AB/1			
		B 1	10M	4	L5
		OR			
8.	a)	Differentiate PDA by empty stack and final state by giving their definitions?	4M	4	L5
	b)	Construct a PDA that accepts the language L = {ww ^R /w \in {a, b}?	10M	4	L5
		UNIT–V			
9.	a)	Explain church's hypothesis?	4M	5	L2
	b)	Explain with a neat diagram, the working of a Turing Machine model?	10M	5	L2
		OR			
10.	a)	What is Undecidability? Explain about PCP and modified PCP?	4M	5	L2
	b)	Design a Turing machine which multiplies two integers?	10M	5	L6
