

## Code: 7GC42

I| B.Tech. I| Semester Supplementary Examinations April 2023

## Probability and Statistics <br> (Common to CE , ME and CSE )

Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ( $5 \times 14=70$ Marks )

## UNIT-I

1. a) A card is drawn from a pack of 52 cards. Find the probability of getting a king or a heart or a red card.
b) A University bought $45 \%, 25 \%$ and $30 \%$ of computers from HCL, WIPRO and IBM respectively and $2 \%, 3 \%$ and $1 \%$ of these were found to be defective. Find the probability of a computer selected at random is found to be defective?

## OR

2. a) Define the following (i) Sample Space (ii) event (iii) Outcome (iv) Probability
b) If two dice are throw, Find the probability of getting a sum is 10

## UNIT-II

3. a) The weekly wages of 1000 workmen are normally distributed around a mean of Rs. 70 with a standard deviation of Rs. 5 . Estimate the number of workers whose weekly wages will be (i) Between Rs. 69 and Rs. 72 (ii) Less than Rs. 69 (iii)More than Rs. 72.
b) Out of 800 families with 5 children each, how many would you expect to have (i) 3 boys (ii) 5 girls (iii) either 2 or 3 boys? Assume equal probabilities for boys and girls.

## OR

4. a) A random variable $x$ has the following probability function values of $x$.

| x | -2 | -1 | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{P}(\mathrm{x})$ | 0.1 | K | 0.2 | 2 k | 0.3 | k |

Find the values $\mathrm{K}, P(X \geq-1), P(X \leq 2)$
b) Fit a poisson distribution to the frequency distribution

| x | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| f | 46 | 38 | 22 | 9 | 1 |

5. a) A population consists of $5,10,14,18,13,24$. Consider all possible samples of size 2 which can be drawn without replacement from this population. Find the population mean and standard deviation, and mean and standard deviation of the sampling distribution of means.
b) Find $95 \%$ confidence limits for the mean of a normality distributed population from which the following sample was taken $15,17,10,18,16,9,7,11,13,14$.

## OR

6. a) A random sample of size 81 was taken whose variance is 20.25 and mean is 32. Construct $98 \%$ confidence interval.
b) A random sample size 100 is taken from a population with $\sigma=5.1$. Given that the sample mean $\bar{x}=21.6$. Construct a $95 \%$ confidence interval for population mean.

## UNIT-IV

7. To examine the hypothesis that the husbands are more intelligent that the wives an investigator took a sample of 10 couples and administered them a test which measures the I.Q. The results are as follows

| Husbands | 117 | 105 | 97 | 105 | 123 | 109 | 86 | 78 | 103 | 107 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Wives | 106 | 98 | 87 | 104 | 116 | 95 | 90 | 69 | 108 | 85 |

Test the hypothesis with a reasonable test at the level of significance of 0.05 .

## OR

8. a) In a sample of 1000 people in Karnataka, 540 are rice eaters and the rest are wheat eaters can we assume that both rice and wheat are equally popular in this state at $1 \%$ of level of significance.
b) Tests performed with a random sample of 40 engineers produced by a large manufacture. Show that they have a mean thermal effect of $31.45 \%$ with a standard deviation $1.6 \%$ at 0.01 level of significance. Test the null hypothesis $\mu=32.3 \%$, against the alternative hypothesis $\mu \neq 32.3 \%$.

## UNIT-V

9. a) The time taken by workers in performing a job by method I and method II is given below

| Method I | 20 | 16 | 26 | 27 | 23 | 22 | - |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Method II | 27 | 33 | 42 | 35 | 32 | 34 | 38 |

Do the data show that the variances of time distribution from population from which these samples are drawn do not differ significantly?
b) The following table gives the classification of 100workers according to sex and nature of work. Test whether the nature of work is independent of the sex of the worker.

|  | Stable | Unstable | Total |
| :---: | :---: | :---: | :---: |
| Males | 40 | 20 | 60 |
| Females | 10 | 30 | 40 |
| Total | 50 | 50 | 100 |
| OR |  |  |  |

10. The measurements of the output of two units have given the following results. Assuming that both samples have been obtained from the normal populations at $10 \%$ significant level, Test whether the two populations have the same variance

| Unit-A | 14.1 | 10.1 | 14.7 | 13.7 | 14.0 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Unit-B | 14.0 | 14.5 | 13.7 | 12.7 | 14.1 |

$\square$
Hall Ticket Number :
Code: 7G644
II B.Tech. II Semester Supplementary Examinations April 2023

## Structural Analysis-I

(Civil Engineering)
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ( $5 \times 14=70$ Marks )
*********

## UNIT-I

1. A fixed beam of length 20 m , carries a UDL of $8 \mathrm{KN} / \mathrm{m}$ on the left hand end, half together with a 120 KN load at 15 m from the left hand end. Find the
a. reactions b. fixing moments and c. magnitude and the position of the maximum deflection. Take $\mathrm{E}=2^{*} 10^{8} \mathrm{KN} / \mathrm{m}^{2}$ and $\mathrm{I}=4^{*} 10^{8} \mathrm{~mm}^{4}$.

OR
2. List and explain the different types of beams with neat sketches

UNIT-II
3. Determine the support moments and reactions as shown in fig below.


OR
4. A continuous beam $A B C D$ of length 15 m rests on four supports covering 3 equal spans and carries a UDL of $1.5 \mathrm{KN} / \mathrm{m}$ length. Calculate the moments and reactions at the supports.

## UNIT-III

5. A continuous beam ABC is carrying uniformly distributed load of $2 \mathrm{kN} / \mathrm{m}$ in addition to a concentrated load of 20 kN as shown in Figure, Draw bending moment and shear force diagrams. Assume El to be constant by using slope deflection method.


OR
6. Explain step by step procedure of Slope Deflection method with suitable example.

## UNIT-IV

7. Derive the maximum shear forces and Bending moments in a beam when Uniformly distributed load is shorter than the span with neat sketch.

OR
8. a) What are influence lines?
b) Derive the influence line diagram for an simply supported beam with neat sketch 10M

UNIT-V
9. Derive the strain energy stored in the beam due to Axial load with neat sketch.
10. Find the deflection at the free end of a cantilever of length $L$ carrying a uniform distributed load of $W$ per unit run over the whole span. Assume uniform flexural rigidity.
|| B.Tech. II Semester Supplementary Examinations April 2023

## Advanced Strength of Materials

(Civil Engineering)
Time: 3 Hours
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ( $5 \times 14=70$ Marks )
*********

## UNIT-I

1. A Spherical shell of internal diameter 25 cm , wall thickness 6 cm is subjected to an internal pressure of $850 \mathrm{~N} / \mathrm{mm}^{2}$. Calculate the values of maximum and minimum circumferential stresses and radial stresses.

## OR

2. a) Derive expressions for change in diameter, length and volume of a thin cylindrical shell subjected to internal pressure
b) A compound thick cylinder is formed by shrinking a hollow cylinder of 150 mm External Diameter over another hollow cylinder of 130 mm Internal Diameter. The common diameter after shrinking is 140 mm . If the radial pressure at the junction is $120 \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{E}=200 \mathrm{kN} / \mathrm{mm}^{2}$, find the original difference in diameter of the two cylindrical shells before shrinking.

7M 12

## UNIT-II

3. A weight of 250 N is dropped on to a helical spring made of 20 mm wire, closely coiled to a mean diameter of 180 mm with 25 coils. Determine the height of drop if the instantaneous compression is $70 \mathrm{~mm} . \mathrm{C}=90 \mathrm{GN} / \mathrm{m}^{2}$.

## OR

4. a) Derive the elongation of close coiled helical spring subjected to axial pull of W, with a diameter d , number of coils n and modulus of rigidity c .
b) A close coiled helical spring is to be made out of 6 mm diameter wire that is 3.0 m long so that it deflects by 24 mm under an axial load of 60 KN . Determine the mean diameter of the coils. Take $\mathrm{C}=88 \mathrm{GN} / \mathrm{m}^{2}$

## UNIT-III

5. a) The connecting rod (CR) of a small petrol engine is made up of a mild steel tubular section 2.5 cm OD and 1 cm ID. Calculate the safe load on the CR if it is designed as a column with both ends pinned. Assume that the length of the CR is 60 cm . Safe buckling stress is $8 \mathrm{kN} / \mathrm{cm}^{2}$. Factor of safety is 6 .
b) Define: Euler's stress, slenderness ratio, equivalent length, buckling factor.

OR
6. Derive the expression for maximum bending moment for a long column subjected to eccentric loading.

14 M 33

## UNIT-IV

7. a) Illustrate the bending stress and net stress for a trapezoidal section dams with vertical water face?
b) The theoretical profile of concrete straight gravity dam is a right angled triangle with the water face vertical. The depth of water retained is the same as the height of dam. Show that the resultant thrust to act with in the middle third, the base width should be H where H is the vertical height of the dam and s is the specific gravity of the concrete dam.

7M $4 \quad 4$

## OR

8. A short column of external diameter 45 cm and internal diameter 25 cm carries an eccentric load of 90 kN . Find the greatest eccentricity which the load can have without producing tension on the cross-section

14M 4

## UNIT-V

9. Write the assumptions made for the analysis of beam subjected to unsymmetrical bending. Determine the stresses due to unsymmetrical bending and deflection?
10. a) Define flexural rigidity, section modulus, bending axis of a beam and shear centre of a section.

7M 5
b) Determine the shear centre for a channel section having dimensions of 15 cm $X 2 \mathrm{~cm}$ for web and $8 \mathrm{~cm} \times 2 \mathrm{~cm}$ for each flange

