	На	ll Ticket Number :														
	Cod	de: 7G241												R-17	7	
		II B.Tech. II S	emeste	ər Su	pple	eme	entar	у Ех	am	inati	ons	Mar	ch 2	021		
							chir									
	110	ax. Marks: 70	(Electi	ical	and	Elec	tron	ics E	ngir	heeri	ng)		Tir	ne: 3	Hour	c
	1010	Answer all five uni	ts by ch	oosin	g on	e qu	estio	n fro	m eo	ach u	unit (5 x 1				3
			·		-	****	****				•					Diagona
							[Marks	СО	Blooms Level
1.	a)	What are the hyster	basis and	eddy		IIT-I	2022	and k	1 1 1 1 1 1	hov s	aro m	inimiz	red?	7M	1	L2
1.	b)												7 101	I	LZ	
	0)	secondary has 200	•		•				•••							
		formulae used.												7M	4	L4
					C	DR										
2.	a)	Explain the working	• • •		•				•	pha	se tr	ansfo	rmer			
		under no load and lo				•	or dia	agrar	ns.					7M	1	L2
	b) Explain the different types of transformers													7M	1	L2
3.	a)	Derive the condition	for maxi	mum	-	IT-II	ofa	sinal	a nha	nco tra	anefo	rmor		7M	2	L2
0.	 a) Derive the condition for maximum efficiency of a single phase transformer. b) An open circuit test on a 50 kVA, 2400 V/240 V transformer gives 240 V, 5.41. 													7 101	2	LZ
	0)	and 186 W when th								•						
		circuit test results w				-		-								
		617 W. Calculate th	ne efficie	ncy a	nd re	gulat	ion a	t full	load	with	a po	wer fa	actor	714	4	L4
		of 0.8 lagging.			~	DR								7M	4	L4
4.	a)	Draw and derive	the eau	uivala			nara	mot	are	ofa	sinc	ila n	hasa			
т.	u)	transformer.				noun	pure				Sing	jie p	nase	7M	2	L2
	b)	At 400 V and 50 H	z the cor	e los	s of a	a trar	sforn	ner v	vas f	ound	to be	e 240	0 W.			
		When the transform	•	•					-			is 80	0 W.			
		Calculate the hyster	esis and	eddy				400	V an	d 50 l	Ηz.			7M	4	L4
5.		Explain with the h	olp of (III–III		or i	diaar	a m	how	tho	Scott			
5.		connections are used	-				•		-					14M	2	L4
					-	DR .			•							
6.	a)	What is mean by pa	rallel ope	eratio	n of t	ransf	ormei	s? E	xplai	n in d	letail			7M	1	L2
	b)	b) A 3 – phase, 1000 kVA, 6600 V/1100 V transformer is delta connected on the									n the					
		primary and star c					•		•	•			•			
		phase is 1.8 ohm Determine the effic			•			•	•							
		factor lagging if the				ut (!)	U III	, 60			()	010 p	e n e i	7M	4	L4
					UN	IT–IV	'									
7.	a)	Explain the princip		-	ation	of a	ı 3 -	- ph	ase	induc	tion	moto	r by			
		explaining rotating n	•						. (. 4.0				1.00/	7M	1	L2
	b)	A 3 – phase, 6 – pol at full load. Determi														
		speed					(••)		20.0			,		7M	4	L5
					C	DR										

7M 2 8. a) Draw and explain slip - torgue characteristics of 3 - phase induction motor. L2 b) The power input to the rotor of 440 V, 50 Hz, 6 - pole, 3 - phase induction motor is 80 kW. The rotor emf is observed to make 100 complete alternations per minute. Calculate: (i) The slip (ii) The rotor speed (iii) Mechanical power developed (iv) The rotor copper loss per phase (v) The rotor resistance per phase if the rotor current is 65 A L5 7M 4 UNIT-V 9. a) Explain the principal of operation of induction generator in detail and what are its limitations? 7M 1 L2 b) Explain any one method of starting of a 3 – phase induction motor. 7M 1 L2 OR 10. a) Explain any one speed control method of 3 – phase induction motor. 7M 3 L2 b) A 50 kW, 6 – pole, 50 Hz, 450 V, 3 – phase slip ring induction motor furnished the following test figures. No load test: 450 V, 20 A, p. f = 0.15 Blocked rotor test: 200 V, 150 A, p. f=0.3 The ratio of stator to rotor copper losses on short circuit was 5:4. Draw the circle diagram and determine from it (i) The full load current and power factor (ii) The maximum torque and the maximum power input (iii) Slip at full load (iv) efficiency at full load. 7M L4 4

Code: 7G241

H	all T	icket Number :			_						
			R-17								
200	ae:	ـــــــــــــــــــــــــــــــــــــ)21		_						
		Analog Electronics-II	~~ 1								
		(Electrical and Electronics Engineering)									
Mc		Tirr swer all five units by choosing one question from each unit (5 x 14 = 70	ne: 3 Ho								
	ΔΠ.	**************************************	Marks J								
		UNIT-I	Marks	СО	В						
1.	a)	Draw the basic block diagram of an operational amplifier and explain its ideal									
	,	characteristics.	7M	1							
	b)	Discuss about the DC characteristics of an op-amp.	7M	1							
		OR									
2.	a)	Determine the output voltage of an op amp for the input voltages of Vin1=150 μ V, Vin2=140 μ V. This amplifier has a differential gain of 4000 and									
		the value of CMRR is 100 and for 105.	7M	1							
	b)	Draw the Internal circuit diagram of an op-amp and explain in detail.	7M	1							
		UNIT–II									
3.	a)	Evaluate and derive an expression for V_0 of the practical integrator circuit by	714	~							
	b)	using op-amp. Explain how op-amp acts as a summer and subtractor.	7M 7M	2 2							
	0)	OR	7 1 1 1	2							
4.	a)	Analyze instrumentation amplifier circuit using op-amp and discuss its									
		applications	7M	2							
	b)	In an integrator circuit, $R_iC_f=1$ sec, and the input is a step input $V_{in}=2V$ for		•							
		0 t 4. Determine the output voltage and sketch it.	7M	2							
5.	a)	Design an anti-log amplifier using op-amp and explain it with the help of a									
	,	circuit diagram.	7M	2							
	b)	Construct a triangular wave generator by using op amp and explain its		_							
		operation. OR	7M	2							
6.	a)	Design a monostable multivibrator using op amp and explain it with the help									
0.	u)	of a circuit diagram.	7M	2							
	b)										
		UNIT–IV									
7.	a)	Realize an astable multivibrator using 555 timer operating at 18KHz with 40% duty cycle.	7M	4							
	b)	Explain the application of PLL as FSK demodulation.	7M	4							
	2)	OR		•							
8.	a)	Draw the basic block diagram of a PLL and explain its principle and operation.	7M	4							
	b)	Explain the application of PLL as frequency translator.	7M	4							
		UNIT–V									
9.	a)	For the R-2R ladder 4 bit type DAC, Find the output voltage and resolution if digital input is 1111. Assume V_{R} = 10 v and R = 10 K = R_{f}	7M	5							
	b)	Discuss the operation of flash type ADC in detail.	7M	5							
	~,	OR	, 111	0							
0.	a)	Write short notes on the following:									
		b) Resolution									
		ii) Linearity	714	F							
	b)	iii) Settling time of a ADCCompare R-2R and weight resistor types of DAC.	7M 7M	5 5							
	5)	compare R-2R and weight resistor types of DAC.	7 111	5							

	ŀ	Hall Ticket Number :			_
			R-17	,	
	Co	Dee: 7GC43 Il B.Tech. Il Semester Supplementary Examinations March 20			_
		Complex Variables and Special Functions			
		(Common to EEE & ECE)		_	
	Μ	iax. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 ********	ne: 3 H Marks		•
			Marks	со	Blooms
		UNIT–I			Level
1.	a)	Show that $\int_{0}^{1} \frac{x^{n_{1}} - (1-x)^{n_{-1}}}{(x+a)n^{i_{+}n}} \equiv \frac{\int_{0}^{-(m,n)}}{an(1+a)n}$	714	0	
	b)	Find all the roots of $\frac{1-m+n}{m+n} = \frac{1}{m}$	7M 7M	2 2	
	,		7 101	2	I
2.	a)	Show that $\int_{0}^{c} x^{n} e^{-a^{2}x^{2}} \equiv \frac{1}{2an+1} \Gamma\left(\frac{n+1R}{2}\right), n > -1$	7M	2	II
	b)	Find all values of z which satisfy $\sum_{r=1}^{r} \frac{c^{2}}{2} - 2$.	7M	2	
3.	a)	Show that $r = xy + ty$ is everywhere continuous but is not analytic.	7M	1	I
	b)	Find all the values of k such that r_{ywhere} continuous but is not analytic. $r_{(x)} = ex(\cos ky + i Sinky)$ is analytic.	7M	1	I
4.	a)	Show that the function $e^{ich that e^{ich}} e^{ich}$ not analytic at the origin, although			
	,	Cauchy- Riemann equations are satisfied at the point.	7M	1	I
	b)	Find k such that $\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$	7M	1	I
		UNIT-III			
5.	a)	Evaluate $\int_{C}^{a^{2} + 2a^{2} + 3a^{2} + 3a^{2}} \int_{C}^{a^{2} + 2a^{2} + 3a^{2} + 3a^{2}} \int_{C}^{a^{2} + 3a^{2} + 3a^{2} + 3a^{2}} \int_{C}^{a^{2} + 3a^{2} + 3a^{2} + 3a^{2}} \int_{C}^{a^{2} + 3a^{2} + 3a$	7M	2	V
	b)	Express $\int_{C} \frac{1}{z^2 d_1} = \frac{1}{z}$ as the Taylor series at the point $\frac{1}{z} = \frac{1}{1}$.	7M	2	П
		OR		-	
6.	a)	Verify Cauchy's theorem for the function the point $f(z) = \frac{1}{z^2 + iz - 4}$ if <i>C</i> is the square with the vertices at $1 \pm i$ and $-1 \pm i$.	7M	2	Ш
	b)	Expr _{ess} $f_{(z)}^{\text{errices}} = (\frac{1}{1-z)(z-2)}$ as the Laurent's series expansion in an annulus region			
		1 < z < 2.	7M	2	II
		UNIT-IV			
7.	a)	Show that $\int_{-\infty}^{\infty} \frac{\cos ax}{x^2+1} dx = \pi e^{-a} a \ge 1$.	7M	3	П
	b)	Show built $J_{-\epsilon} = \frac{2}{12} \frac{2}{12} \frac{1}{12} e^{-a}$ by the number of zeros $0 \Rightarrow$ polynomial Use $R'_{12} = 2 \frac{2}{24} - 2 \frac{2}{23} + 2 \frac{2}{22} + 2 \frac{1}{2} + 1$, that lie inside the circle $ z = 1$.			
		$f(z) = 2z_4 - 2z_3 + 2z_2 + 2z + 1$, that lie inside the circle $ z = 1$.	7M	3	
8.		Solve $\int_{-\infty}^{\infty} \frac{dx}{(x^2+d^2)(x^2+b^2)} dx$, $a > 0$, $b > 1$, $a \neq b$.			
0.			14M	3	III
9.	a)	UNIT-V			
0.	u)	Illustrate the sign of the infinite strip $0 < \frac{1}{\nu < \frac{1}{2}}$ under the			
		transformation $w = \overline{z}$.	7M	2	II
	b)	Find the bilinear transfor on that maps the point $(0,1,\infty)$ in the <i>z</i> -plane onto the point $(-1, -2, -i)$ in the w-plane.	714	2	
		OR	7M	Ζ	I
10.	a)	Illustrate the in nage of the rectar gle R $R: -\pi < x < \pi, \frac{1}{2} < y < 1$ under the			
		transformation $w = \sin z$.	7M	2	П
	b)	trind the linear = 5 nsformation that maps $[0, \frac{3}{2}, 1, 1, \infty] \infty$ onto			
		$w_1 = -1, w_2 = -i, w_3 = 1$ respectively.	7M	2	I

		Hall Ticket Number :]				
	C	Code: 7G244					I]	R-1	7		
II B.Tech. II Semester Supplementary Examinations March 2021																
Electrical Circuits-II																
		Max. Marks: 70	(Elect	ical	and	Elec	tron	ics E	ngir	ieeri	ng)		Time: 3			
		Answer all five units	s by cho	posing	g on	e qu	estio	n fro	m ec	ιchι	unit (5 x 14				
						****	****							Marks	со	BL
					UNIT	- -I								Maiks	00	DL
1.	a)	Three coils each havin star and (ii) in delta to a phase voltages and (b)	a 415 V,	3-pha	ase s	upply	/. Fin						• • •		1	I
	b)	A three phase motor dra voltages of 300V rms a parallel delta connected	at 60Hz	Thre	e ca	pacit	ors o	of what	at siz						1	I
2.	a)	Under what condition we three phase load in a the coil is between the othe	nree wire	e syst											1	Ι
	b)	A Delta Connected so														
		voltage source with a r	resistand	e of	0.1	, but	the t	hree	volta	ges a	are ¹	00∠0,	1012-120			
		and ^{99∠120°} V rms. Fin power loss in the sourc	d the so e	urce p	bhase	e curr	ents	unde	r no-	load	cond	litions a	and the tota	l 7M	1	Ι
			0.	l	JNIT	-11										
3.	a)	Find the Laplace transferred (i) $2e^{-3 t }$ (ii) $2e^{-3t}[u(t+3) -$			f the	follov	ving f	uncti	ons							
		(iii) $2e^{3t}[u(t+3) - 1]$												7M	2	Ι
	b)	Find F(s) if f(t)= : (i) $2e^{\sin \varepsilon}\delta(t)$														
		(ii) $tu(t-2)$														
		(iii) $\delta(t-2)$				OR								7M	2	Ι
4.	a)	Find the partial fraction	expansi	on of	each		e foll	owing	g fun	ctions	5					
		(i) $2s/(s^2+5s+4)$							-							
		(ii) 2/(s ² +2s+2) (iii) s ³ /(s ² +2s+1)														
		(iv) (4s+1)/(s ⁴ +2s ³ +	,											7M	2	Ι
	b)	Find the inverse Laplac (i) (2s+3)/(s ² +1) (ii) s ² /(s ⁴ +3s ² +2)	e transfo	orm fo	or the	follo	wing	funct	ions					7M	2	Ι
_					JNIT]									
5.		For the circuit shown in	figure 3			-	and	$V_2(t)$	for t	>0						
		50 µA (1		Ω			+ *		+ ⁺	2_ (μF Ω] ₹8:	MΩ				
				1	1979			4	10		Í					
			<u> </u>		 F	igure	3	100						14M	3	111
					-	0							_		-	

Page **1** of **2**

OR

6. a) With reference to the circuit shown in figure 2, let V(0) = 9V. Solve for i(t) for $t \ge 0$

Figure 2

b) After having been closed for a long time, the switch in the network of figure 1 is opened at t=0. Solve for $V_c(t)$ for t > 0

Ш 7M 3

7M 3 Ш

UNIT-IV

colain the following properties 7. a)

b)

b)

b)

10. a)

8. a)

9. a)

)	Explain the following properties of Fourier transforms			
	(i) Linearity			
	(ii) Differentiation			
	(iii) Symmetry	7M	4	П
)	Prove the Parseval's theorem statement?	7M	4	V
	OR			
)	Explain evaluation of Fourier coefficients using unit impulses.	7M	4	П
)	Prove that if $f(t)$ is even, its Fourier transform $F(j\omega)$ is also an even function	7M	4	V
	UNIT-V			
)	Assess the following polynomials for the Hurwitz property.			
	(i) s^3+4s^2+5s+2			
	(ii) s ⁴ +s ² +s+1			
	(iii) s ⁵ +2s ³ +s	7M	5	V
)	Determine whether the following functions are positive real			
	(i) $(s^2+1)/(s^3+4s)$			
	(ii) $(2s^2+2s+4)/((s+1)(s^2+2))$	7M	5	V
	OR			
)	Prove that if $Z_1(s)$ and $Z_2(s)$ are both positive real $Z(s) = \frac{Z_1(s)Z_2(s)}{Z_1(s)+Z_2(s)}$ Must also be			
	positive real	7M	5	V

b) Show that the product of two positive real functions need not be positive real. Also show that the ratio of one positive real function to another may not be positive real(Give one example each) 7M 5

Ш

Hall	Ticket Number :									
Code	: 7G242	R-17								
II B.Tech. II Semester Supplementary Examinations March 2021 Electromagnetic Fields (Electrical and Electronics Engineering)										
		ne: 3 Hours Marks)								
	UNIT–I	Marks CO BL								
1. a)	A circular disc us 'a' is charged uniformly with a charge density of s C/m². Find e at a point 'h' m from the disc along its axis	7M								
b	Find ^{Sular dis} (0,3) due to point charge -15.734 mC at (4,0,0) and a line charge 9.427 mC/m along the y axis.	7M								
	OR									
2. a		7M								
b	Four point charges, each 20µC are on the x and y axes at ±4 m. Find the force on a 200µC point charge at (0,0,3)m. UNIT-II	7M								
3. a)		7M								
b	Obtain the capacitance of co-axial cable capacitor using Laplace's equation.	7M								
4. a	OR Derive the expression for capacitance of composite parallel plate capacitor.	7M								
b										
	0.	7M								
5. a	UNIT-III	714								
5. aj bj) Using Biot-savart law, find , june or infinitely long straight conductor.	7M								
~	Giver a_{2}^{-1} $\overline{A}_{4} = -\frac{1}{4}a_{x}$ Wb/m in cylindrical system. Calculate the flux crossing the									
	surface $=\frac{\Pi}{2}$, 1 r 2 m, 0 z 5 m	7M								
	OR	7101								
6. a)) Using Ampere's circuital law, find to a co-axial cable carrying current I.	7M								
b	A wire carrying a current of 100 A is bent into a square of 10 cm side. Calculate the field at the centre of the square.									
7. a	What is Magnetic moment? Derive an expression for torque on a closed loop.	7M								
b	A solenoid having a mean diameter of 20 cm and length of 50 cm has 1000 turns. This coil is placed co-axially inside another solenoid having a mean diameter of 60 cm and number of turns equal to 2000. The length of the outer solenoid is equal to that of inner solenoid. Compute L ₁ , L ₂									
	and M. Neglect magnetic leakage. Medium is air.	7M								

a) b)										
	UNIT-V									
a)	Explain the Faraday's disc generator and derive an expression for finding the un-known magnetic field.	7M								
b)) The displacement current density is 5 cos (2X10 ⁸ t - kz material for which =0, = 5 $_{0}$, $\mu = 4\mu_{0}$. Find the values of \overline{D} and \overline{E}									
	OR									
a) b)	State poynting's theorem. What is Poynting vector? A conductor of length 100 cm moves at right angles to uniform field of strength 10000 lines per cm ² , with a velocity of 50 m/s. Calculate e.m.f. induced it when the conductor moves at a angle 30 ^o to the direction of the field.	7M 7M								
	b) a) b) a)	 b) A rectangular loop of wire in a free space joins point A(1,0,1) to B(3,0,1) to C(3,0,4) to A. The wire carries a current of 6 mA flowing in the az direction from B to C. A filamentary current of 15 A flows along entire z-axis in the az direction. Find force on the loop. UNIT-V a) Explain the Faraday's disc generator and derive an expression for finding the un-known magnetic field. b) The displacement current density is 5 cos (2X10⁸t - kz (ax (ax (ax (ax (ax (ax (ax (ax (ax (ax								

		Hall Ticket Number :													
	L	Code: 7G243										<u> </u>		R	-17
II B.Tech. II Semester Supplementary Examinations March 2021													1		
									Syst						
		Max. Marks: 70	(Ele	ectri	cal	and	Elec	tron	ics E	ngir	neeri	ing)		Time	: 3 Hours
Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)												arks)			
												Marks			
						UN									
1.	a)	Simplify the block diagra C(s)/R(s). Verify the resu				-			and o	btain	the t	rans	fer func	tion	
							•	G 4		1			_		
		R≠∕S_→G	_ ∔(<u>Э</u> ч	₩		G	\vdash	_ ►¢	▼ ⊗—	→ (-	i	c	•	
		Î			1	н]←	·							
						L			н				-		
	Figure 1												4014		
	b)	Define transfer function	and	anal	vze i	•		ons?							10M 4M
	,				,		DR								
2.	a)	Compare Open loop and	d clo	sed	loop	conti	ol sy	stem	S						4M
	b)	Obtain the transfer funct	ion	of a f	ield (Ser	vo mo	otor					10M
3.	a)	If x is the input and y is t	the o	outpu	ut of t	UNI the s		n des	cribe	d by	the c	differe	ential e	quation	
	,	$\frac{d^2y}{dt^2} + 4\frac{dy}{dx} + 8y = 8$		•						-				•	
		ratio, damped natural fi													
		time response for unit st	ep.	-	-						-				
	b)	Analyze the various te	net i	siana	ole ra	auir	od ir	h tha	ana	lveie	of	etoor	ty etat	o orror	7M
	0)	analysis?	551	Signa		Squir	eu ii			119515	UI -	Sical	ly stat	e enoi	7M
						C	DR								
4.	a)	Derive the expressions f		-			-				-				6M
	b)	Valuate the static error					-		-			-		-	
		transfer function $G(s)$ =		(s+1))	suma	lie in	e sie	auy s	state	enor	5 01	ine sys	lem ior	
		the input $r(t) = 1 + 2t + t^2$	<u>-</u> .			UNI	T_III								8M
5.		Find the conditions for	stab	ility o	of the			who	se cł	harac	teris	tic e	quation	s given	
		below. In each case, de and the frequency of Os				alue	of K	which	n will	caus	se su	stain	ed osci	illations	
		and the frequency of OS a. $s^4 + 20s^3 + 224s^2$				-00 +	K = (C							
		b. s ³ + (6K + 0.5)s ² -	+ 4K	(s + 5	50 = 0										14M
						C	DR								
															Page 1 of 2

6.	a)	Analyze Relative stability of a system with suitable example?	4M
	b)	Given $G(s) = \frac{K}{s(s+1)(s+3)}$. Sketch the root locus plot and comment on the stability.	
		Also determine the range of K for which the system is stable and the frequency of sustained oscillations.	10M
		UNIT-IV	
7.		Sketch the bode plot for the transfer function given by $G(s) = \frac{10}{s(1+0.5s)(1+0.1s)}$ and	
		hence determine the gain margin and the phase margin of the system.	14M
		OR	
8.		The open loop transfer function of the unity feedback system is $G(s) = \frac{k}{s(s+2)(s+10)}$.	
		By using Nyquist plot	
		a. Find the range of k for stability	
		 Find the value of k for gain margin be 10 dB 	
		c. Find the value of k for phase margin to be 50°	14M
		UNIT–V	
9.		The open loop transfer function of a unity feedback system is	
		$G(s) = \frac{K_v}{s(s+2)}$. Design a suitable lead compensator to meet the following	
		specification : K _v =12s ⁻¹ , _{pm} =45°	14M
		OR	
10.	a)	Design state model of a series RLC circuit with output voltage measured across	
		capacitor and current denoted as I∟	7M
	b)	Design the basic lag compensator and draw the Bode plot	7M
