Hall Ticket Number :

Code: 7G345

II B.Tech. II Semester Supplementary Examinations April 2023

Analog Electronics-II

(Electrical and Electronics Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$

UNIT-I

1. Discuss the DC characteristics of an Op Amp.

OR

2. a) Explain in detail the compensation techniques of Op-amp with relevant expressions
b) For the non-inverting amplifier $R_{1}=1 \mathrm{~K}$ and $R_{f}=10 \mathrm{~K}$. Calculate the maximum output offset voltage due to $\mathrm{V}_{\text {ios }}$ and I_{B}. the op-amp $\mathrm{V}_{\text {ios }}=10 \mathrm{mV}$ and $I_{B}=300 \mathrm{nA}, \mathrm{I}_{\mathrm{os}}=50 \mathrm{nA}$. Calculate the value of $\mathrm{R}_{\text {comp }}$ needed to reduce the effect of I_{B}

UNIT-II

3. a) Illustrate the operation of inverting summer circuit using IC 741 . 7M
b) Illustrate the operation of Subtractor circuit using IC 741 . 7M

OR

4. Discuss the drawbacks of Op-Amp Integrator and Explain how to overcome them using Lossy Integrator

UNIT-III

5. a) Explain the operation of Precision Half-wave Rectifier.
b) Discuss the operation of Log Amplifier. 7M

OR

6. a) Demonstrate the applications of Op-Amp Comparator. 7M
b) Illustrate the operation of Schmitt Trigger circuit using IC 741 . 7M

UNIT-IV

7. Design an astable multivibrator circuit using IC 555, and derive expression for frequency of the output.

OR

8. a) Draw the pin diagram of IC 555 and list out its applications 6 M
b) Explain the basic principle of operation using block schematic of a PLL. 8 M

UNIT-V
9. What are the specifications that we need to consider in ADC/DAC design? Explain in detail.

OR

10. a) With the help of neat diagram explain the operation of Monolithic DAC
b) For the DAC converter using R-2R ladder network having a full-scale voltage 10 V and $\mathrm{R}=30 \mathrm{M}$
i) Determine the size of each step if $R_{f}=27 \mathrm{k}$
ii) Calculate output voltage when the inputs are $b_{0} \& b_{1}$ at $5 \mathrm{~V}, \mathrm{~b}_{2} \& \mathrm{~b}_{3}$ at 0 V .

Code: 7GC43

|| B.Tech. || Semester Supplementary Examinations April 2023

Complex Variables \& Special Functions

(Common to EEE and ECE)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit (5×14 = 70 Marks)

UNIT-I

1. Separate the real and imaginary parts of Tan $h z$

OR

2. a) Symmetry of Beta function $B(m, n)=B(n, m)$
b) Evaluate $\int_{0}^{1} \frac{x^{2}}{\sqrt{1-x^{5}}} d x$ in terms of B function

UNIT-II

3. Prove that $\left.\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) \right\rvert\, \operatorname{Re}$ al $f(z)^{2}=2\left|f^{\prime}(z)\right|^{2}$ where $w=f(z)$ is analytic.

OR

4. a) Show that $f(z)=z+2 \bar{z}$ is not analytic anywhere in the complex plane. 7 M
b) Determine whether the function $2 x y+i\left(x^{2}-y^{2}\right)$ is analytic. 7 M

UNIT-III

5. Expand $f(z)=\frac{1}{z^{2}-3 z+2}$ in the region (1) $0<|z-1|<1 \quad$ (2) $1<|z|<2 \quad 14 \mathrm{M}$

OR

6. Evaluate $\int_{c}\left(y^{2}+2 x y\right) d x+\left(x^{2}-2 x y\right) d y$ where c is the boundary of the region by $y=x^{2}$ and $x=y^{2}$

UNIT-IV

7. Find the Residue of $\frac{z^{2}-2 z}{(z+1)^{2}\left(z^{2}+1\right)}$

OR

8. a) Find the poles and Residues at each pole $\frac{z e^{z}}{(z-1)^{3}}$
b) Use Residue theorem to find the number of zeros of the polynomial $z^{10}-6 z^{7}+3 z^{3}+1$ if $|z|<1$

UNIT-V

9. Find the bilinear Transformation which maps the points $(-i, 0, i)$ into the points $(-1, i, 1)$ respectively.

OR

10. Show that the transform $w=\frac{2 z+3}{z-4}$ changes the circle $x^{2}+y^{2}-4 x=0$ into the straight line $4 u+3=0$
\square

Code: 7G244

|| B.Tech. II Semester Supplementary Examinations April 2023

Electrical Circuits-II

(Electrical and Electronics Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. An induction motor draws a three phase power. Two wattmeter measurement is applied to find total power. If $W_{1}=10 \mathrm{KW}$ and $W_{2}=5 \mathrm{KW}$ determine the total active power, reactive power and power factor.

OR

2. a) List out the advantages of three phase system over single phase system.
b) Explain the two-wattmeter method of 3-Ф power measurement.

UNIT-II

3. a) The output of the system is $Y(s)=\frac{10}{S\left(S^{2}+S+100 \sqrt{2}\right)}$ the steady state value of $y(t)$
b) Determine the Laplace transform of the following function $\mathrm{f}(\mathrm{t})=\frac{\left(2-2 s^{-2 L}\right)}{t} \quad 7 \mathrm{M}$

OR
4. a) State and Prove Initial value theorem and Final value theorem.
b) Explain the step response of series RL Circuit using Laplace Transform.
5. Derive the expression for current response of RL series circuit with a DC excitation.
6. In the circuit show in fig. determine the current expression for $i_{1}(t)$ and $i_{2}(t)$ when switch is closed at $t=0$. Assume circuit has no initial energy.

7. a) Determine the trigonometric Fourier series for the square wave

$$
\begin{array}{cc}
V(t)=10 & 0 \leq t \leq 2 \mathrm{sec} \\
=-10 & 2 \leq t \leq 4 \mathrm{sec}
\end{array}
$$

b) Determine Fourier transform of the given signal $x(t)$

8. a) Explain all wave form symmetry by using relevant examples. 7M
b) Discuss properties of Fourier transforms. 7M

UNIT-V
9. Realize the given impedance function using Cauer form I

$$
Z(S)=\frac{(s+4)(S+8)}{(s+2)(S+6)}
$$

OR
10. An admittance function is given by

$$
Y(S)=\frac{(S+4)(S+6)}{(S+3)(S+5)}
$$

Realize the R-L network in second foster form.

Code: 7G242

|| B.Tech. || Semester Supplementary Examinations April 2023

Electromagnetic Fields

(Electrical and Electronics Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Derive the expression for electric field intensity due to infinite sheet of charge $\rho_{s} \mathrm{C} / \mathrm{m}^{2}$
b) Derive point form of Maxwell's second equations.

OR

2. a) State and explain vector form of Coulombs law.
b) Derive the potential at a point P when a charge q is moving from infinite to point P. UNIT-II
3. a) Define potential gradient and derive the relation between E and V
b) A dipole having moment $P=3 a x-5 a y+10 a_{z} n C m$ is located at $Q(1,-2,-4)$ in the space. Find V at $P(2,3,4)$.

OR

4. a) Derive the expression for the spherical capacitance.
b) Deduce the boundary conditions for dielectric to dielectric with tangential and normal component.

UNIT-III

5. a) Determine an expression for H at $(0,0, h)$ of a circular wire carrying a current I in clockwise direction. The radius of the circle is ' R ' and wire is in $X-Y$ plane.

33
b) A circular loop located on $X^{2}+Y^{2}=9, z=0$ carries a current of 10 A along a_{Φ}. determine H at $(0,0,4)$

OR

6. a) Derive Maxwell's fourth equation in static magnetic field.
b) Derive the expression for magnetic field intensity due to an Infinite conductor carrying a current I Using ampere's circuital law.

UNIT-IV

7. a) Evaluate the magnetic force due to a moving point charge in the magnetic field.
b) A negative charge $Q=-40 \mathrm{nc}$ is moving with a velocity of $6 \times 10^{-6} \mathrm{~m} / \mathrm{sec}$ in a direction specified by the Unit vector $\mathrm{a}_{v}=-0.48 \mathrm{a}_{x}-0.6 \mathrm{a}_{\mathrm{y}}+0.64 \mathrm{a}_{z}$. Find the magnitude of vector force exerted by the field $\vec{B}=2 a_{x}-3 a_{y}+5 a_{z} T, \vec{E}=2 a_{x}-3 a_{y}+5 a_{z} \mathrm{Kv} / \mathrm{m}$.

OR

8. a) Describe the classification of magnetic materials with examples.

UNIT-V

9. Explain Faraday's laws of Electromagnetic Induction and Derive the expression for static induced emf and dynamic induced emf.

OR

10. a) Explain Faraday's laws of Electromagnetic Induction and Derive the expression for dynamic induced emf.
b) A circular cross section conductor of radius 3 mm carries a current lc $=5 \sin (6 \times 108)$ $\mu \mathrm{A}$ what is the amplitude of the displacement current density if $\sigma=40 \mathrm{~ms} / \mathrm{m}$ and $\varepsilon_{r}=1$.
8M $\quad 1$

b) Derive the expression for magnetic force on a current element in the external magnetic field.

Hall Ticket Number :
Code: 7G241
I| B.Tech. II Semester Supplementary Examinations April 2023
AC Machines-I
(Electrical and Electronics Engineering)
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks) *********

UNIT-I

1. a) Discuss the effect of variation of frequency and supply voltage on losses in a transformer.
b) The core of a $100 \mathrm{kVA}, 11000 / 550 \mathrm{~V}$, 1-phase core type transformer has a cross-section of $400 \mathrm{~cm}^{2}$. Find (i) the number of HV and LV turns per phase and (ii) the e.m.f per turn if the maximum core density is not exceeding 1.3 Tesla. Assume a stacking factor of 0.9. What will happen if its primary voltage is increased by 10% on no-load?

OR

2. a) Explain the different types of losses in the transformer.
b) Derive the EMF equation of a single phase transformer.

UNIT-II

3. a) In OC and SC tests of a transformer, explain why the wattmeter in OC test reads core losses and wattmeter in SC test reads copper losses?
b) A $100 \mathrm{kVA}, 6.6 \mathrm{kV} / 415 \mathrm{~V}$, single phase transformer has an effective impedance of $(3+j 10 \quad)$ referred to h.v side. Estimate full load voltage regulation at $0.8 p . f$ leading and power factor corresponding to the zero voltage regulation?

OR

4. a) With neat circuit diagram explain the of a short circuit test conducted on a transformer.
b) Derive necessary condition for zero and negative regulation of a transformer.

UNIT-III

5. a) Prove that the load carried by the open delta connection is 0.577 times the original load carried by the delta-Delta connection.
b) A 400 KVA load at 0.7 p.f lagging is supplied by three $1-\mathrm{Ph}$ transformers connected in Delta-Delta. Each of the Delta-Delta transformers is rated at $200 \mathrm{KVA}, 2300 / 230 \mathrm{~V}$. If one defective transformer is removed from the service, calculate for the Open delta connection: (i) The KVA load carried by each transformer. (ii) Percent rated load carried by each transformer. (iii) Ratio of Open delta bank to Delta-Delta bank ratings.

OR

6. a) Write the advantages of a transformer bank of three 1-Phtransformers. 7M
b) What is the need of connecting the transformers in parallel? Mentions the conditions for parallel operating of transformers.
UNIT-IV
7. a) Explain, why the speed of 3 -phase induction motor cannot be equal to synchronous speed? 4M
b) A 3-phase, 4-pole, 50 Hz , induction motor has a star connected wound rotor. The rotor emf is 50 V between the slip rings at standstill. The rotor resistance and standstill reactance are 0.4 and 2 respectively. Calculate i) Rotor current per phase at starting if 50 /ph resistance is connected between slip rings. ii) Rotor current and power factor at full load, when the motor running at 1440 rpm and slip rings are shorted. 10M
OR
8. a) Describe the construction of a 3-phase cage type induction motor with neat sketch 7M
b) Explain in detail about torque - slip characteristics. 7M
UNIT-V9. a) How is the speed of a 3-phase induction motor controlled by its stator voltagecontrol?6 M
b) A 4-pole induction motor and 6-pole induction motor are connected in cumulative cascade at 50 Hz supply. The frequency in the secondary circuit of the 6-pole motor is observed to be 1.0 Hz . Determine the slip in each machine and combined speed of the set. 8M
OR
9. a) Explain the principle of operation of an induction generator. 7M
b) Explain the induction motor operation under injection of an e.m.f. into the rotor circuit 7M
