
L		II Ticket Number : R	·17
	Coc	Je: 7G345 Il B.Tech. II Semester Supplementary Examinations April 2023	
		Analog Electronics-II	
		(Electrical and Electronics Engineering)	
	Mc		3 Hours
	Ans	swer any five full questions by choosing one question from each unit (5x14 = 70) Marks)
		*****	Marks
		UNIT–I	
1.		Discuss the DC characteristics of an Op Amp.	14M
		OR	
2.	a)	Explain in detail the compensation techniques of Op-amp with relevant expressions	8M
	b)	For the non-inverting amplifier $R_1 = 1$ K and $R_f = 10$ K. Calculate the	OW
	0)	maximum output offset voltage due to V_{ios} and I_B . the op-amp $V_{ios} = 10$ mV and	
		$I_B = 300$ nA, $I_{os} = 50$ nA. Calculate the value of R_{comp} needed to reduce the	
		effect of I _B	6M
		UNIT–II	
3.	a)	Illustrate the operation of inverting summer circuit using IC 741.	7M
	b)	Illustrate the operation of Subtractor circuit using IC 741.	7M
		OR	
4.		Discuss the drawbacks of Op-Amp Integrator and Explain how to overcome them using Lossy Integrator	14M
			14101
5.	a)	Explain the operation of Precision Half-wave Rectifier.	7M
	b)	Discuss the operation of Log Amplifier.	7M
	,	OR	
6.	a)	Demonstrate the applications of Op-Amp Comparator.	7M
	b)	Illustrate the operation of Schmitt Trigger circuit using IC 741.	7M
		UNIT-IV	
7.		Design an astable multivibrator circuit using IC 555, and derive expression for	
		frequency of the output.	14M
		OR	
8.	a)	Draw the pin diagram of IC 555 and list out its applications	6M
	b)	Explain the basic principle of operation using block schematic of a PLL.	8M
-		UNIT-V	
9.		What are the specifications that we need to consider in ADC/DAC design?	4 4 5 4
		Explain in detail.	14M
0	a)	OR With the belo of next diagram explain the operation of Monolithic DAC	7M
υ.		With the help of neat diagram explain the operation of Monolithic DAC	7 111
	b)	For the DAC converter using R-2R ladder network having a full-scale voltage $10V$ and R = $30M$.	
		i) Determine the size of each step if $R_f = 27k$	
		ii) Calculate output voltage when the inputs are $b_0 \& b_1$ at 5V, $b_2 \& b_3$ at 0V.	7M

	Ha	Il Ticket Number :	
	Coc	de: 7GC43	-17
		II B.Tech. II Semester Supplementary Examinations April 2023 Complex Variables & Special Functions (Common to EEE and ECE)	
			3 Hours) Marks (
		UNIT–I	Marks
1.		Separate the real and imaginary parts of Tan h z	14M
2.	a)	OR Symmetry of Beta function B(m, n)=B(n, m)	7M
	b)	Evaluate $\int_{0}^{1} \frac{x^2}{\sqrt{1-x^5}} dx$ in terms of B function	7M
3.		Prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \operatorname{Re} al f(z) ^2 = 2 f'(z) ^2$ where $w = f(z)$ is analytic. OR	14M
4.	a)	Show that $f(z) = z + 2\overline{z}$ is not analytic anywhere in the complex plane.	7M
	b)	Determine whether the function $2xy + i(x^2 - y^2)$ is analytic.	7M
 1. 2. 3. 4. 5. 6. 7. 8. 		Expand $f(z) = \frac{1}{z^2 - 3z + 2}$ in the region (1) $0 < z - 1 < 1$ (2) $1 < z < 2$	14M
0		OR	
6.		Evaluate $\int_{c} (y^2 + 2xy) dx + (x^2 - 2xy) dy$ where c is the boundary of the region by	
		$y = x^2$ and $x = y^2$	14M
		UNIT–IV	
7.		Find the Residue of $\frac{z^2 - 2z}{(z+1)^2(z^2+1)}$	14M
		OR	
8.	a)	Find the poles and Residues at each pole $\frac{ze^{z}}{(z-1)^{3}}$	7M
	b)	Use Residue theorem to find the number of zeros of the polynomial $z^{10} - 6z^7 + 3z^3 + 1$ if $ z < 1$	7M
•		UNIT-V	
9.		Find the bilinear Transformation which maps the points $(-i, 0, i)$ into the points $(-1, i, 1)$ respectively.	1414
		OR	14M
10.		Show that the transform $w = \frac{2z+3}{z-4}$ changes the circle $x^2 + y^2 - 4x = 0$ into	
		the straight line 4u+3=0 ***	14M
		* * *	

Page 1 of 1

	ŀ	Hall Ticket Number :			
	С	code: 7G242	R-17		
		II B.Tech. II Semester Supplementary Examinations April 2023 Electromagnetic Fields (Electrical and Electronics Engineering)	3 e: 3 Hou	Jrs	
	ŀ	Answer any five full questions by choosing one question from each unit (5x14 =		,	
		UNIT-I	Marks	CO	BL
1.	a)	Derive the expression for electric field intensity due to infinite sheet of charge s C/m ²	8M	1	3
	b)	Derive point form of Maxwell's second equations. OR	6M	1	3
2.	a)	State and explain vector form of Coulombs law.	7M	1	2
	b)	Derive the potential at a point P when a charge q is moving from infinite to point P.	7M	1	3
3.	a)	Define potential gradient and derive the relation between E and V	7M	1	1
	b)	A dipole having moment P = $3ax - 5ay + 10 a_z$ nCm is located at Q (1, -2, -4) in the			
		space. Find V at P (2, 3, 4).	7M	1	3
4	a)	OR Derive the expression for the spherical capacitance.	7M	2	3
	b)	Deduce the boundary conditions for dielectric to dielectric with tangential and normal component.	7M	2	4
		UNIT-III		·	•
5.	a)	Determine an expression for H at (0, 0, h) of a circular wire carrying a current I in clockwise direction. The radius of the circle is 'R' and wire is in X-Y plane.	9M	3	3
	b)	A circular loop located on X ² +Y ² =9, z=0 carries a current of 10A along a . determine H at (0,0,4)	5M	3	3
0	-)	OR			
6.	a)	Derive Maxwell's fourth equation in static magnetic field.	7M	3	3
	b)	Derive the expression for magnetic field intensity due to an Infinite conductor carrying a current I Using ampere's circuital law.	7M	3	3
7.	a)	Evaluate the magnetic force due to a moving point charge in the magnetic field.	7M	3	3
	b)	A negative charge Q= -40nc is moving with a velocity of $6X10^{-6}$ m/sec in a direction specified by the Unit vector $a_v = -0.48a_x - 0.6a_y + 0.64a_z$. Find the magnitude of vector		-	-
		force exerted by the field $\vec{B} = 2a_x-3a_y+5a_z$ T, $\vec{E} = 2a_x-3a_y+5a_z$ Kv/m.	7M	3	3
		OR			
8.	a)	Describe the classification of magnetic materials with examples.	7M	4	2
	b)	Derive the expression for magnetic force on a current element in the external magnetic field.	7M	3	3
0		UNIT-V			
9.		Explain Faraday's laws of Electromagnetic Induction and Derive the expression for static induced emf and dynamic induced emf.	14M	5	2
10.	a)	Explain Faraday's laws of Electromagnetic Induction and Derive the expression for dynamic induced emf.	7M	5	2
	b)	A circular cross section conductor of radius 3 mm carries a current lc = 5 sin (6 X 108) μ A what is the amplitude of the displacement current density if = 40 ms/m and r =1.	7M	5	3

	На	II Ticket Number :	17		
	Cod	de: 7G241	-17		
		II B.Tech. II Semester Supplementary Examinations April 2023			
		AC Machines-I			
	140	(Electrical and Electronics Engineering) ax. Marks: 70 Time:	3 Hours		
Answer any five full questions by choosing one question from each unit (5x14					
			Marks		
		UNIT–I			
1.	a)	Discuss the effect of variation of frequency and supply voltage on losses in a			
		transformer.	7M		
	b)	The core of a 100 kVA, 11000/550 V, 1-phase core type transformer has a cross-section of 400 cm ² . Find (i) the number of HV and LV turns per phase and (ii) the e.m.f per turn if the maximum core density is not exceeding 1.3Tesla. Assume a stacking factor of 0.9. What will happen if its primary voltage is increased by 10% on no-load?	7M		
		OR			
2.	a)	Explain the different types of losses in the transformer.	7M		
	b)	Derive the EMF equation of a single phase transformer.	7M		
		UNIT–II			
3.	a)	In OC and SC tests of a transformer, explain why the wattmeter in OC test reads core losses and wattmeter in SC test reads copper losses?	7M		
	b)	A 100 kVA, 6.6 kV/415V, single phase transformer has an effective impedance of $(3 + j10)$ referred to h.v side. Estimate full load voltage regulation at 0.8p.f leading and power factor corresponding to the zero voltage regulation?	7M		
		OR	7101		
4.	a)	With neat circuit diagram explain the of a short circuit test conducted on a			
		transformer.	7M		
	b)	Derive necessary condition for zero and negative regulation of a transformer. UNIT-III	7M		
5.	a)	Prove that the load carried by the open delta connection is 0.577 times the original load carried by the delta-Delta connection.	7M		
	b)	A 400KVA load at 0.7 p.f lagging is supplied by three 1-Ph transformers connected in Delta-Delta. Each of the Delta-Delta transformers is rated at 200KVA, 2300/230V. If one defective transformer is removed from the service, calculate for the Open delta connection: (i) The KVA load carried by each transformer. (ii) Percent rated load carried by each transformer.			
		(iii) Ratio of Open delta bank to Delta-Delta bank ratings.	7M		
e	c)	OR Write the adventores of a transformer bank of three 1. Distronoformers	71/		
6.	a) b)	Write the advantages of a transformer bank of three 1-Phtransformers.	7M		
	b)	What is the need of connecting the transformers in parallel? Mentions the conditions for parallel operating of transformers.	7M		

UNIT-IV

7.	a)	Explain, why the speed of 3-phase induction motor cannot be equal to synchronous speed?	4M
	b)	A 3-phase, 4-pole, 50 Hz, induction motor has a star connected wound rotor. The rotor emf is 50V between the slip rings at standstill. The rotor resistance and standstill reactance are 0.4 and 2 respectively. Calculate	
		i) Rotor current per phase at starting if 50 /ph resistance is connected between slip rings. ii) Rotor current and power factor at full load, when the motor running at 1440 rpm and slip rings are shorted.	10M
		OR	
8.	a)	Describe the construction of a 3-phase cage type induction motor with neat sketch.	7M
	b)	Explain in detail about torque – slip characteristics.	7M
		UNIT–V	
9.	a)	How is the speed of a 3-phase induction motor controlled by its stator voltage control?	6M
	b)	A 4-pole induction motor and 6-pole induction motor are connected in cumulative cascade at 50 Hz supply. The frequency in the secondary circuit of the 6-pole motor is observed to be 1.0 Hz. Determine the slip in each machine	
		and combined speed of the set.	8M
		OR	
10.	a)	Explain the principle of operation of an induction generator.	7M
	b)	Explain the induction motor operation under injection of an e.m.f. into the rotor circuit	7M
