Hal	l Tic	ket Number :															
Code	e: 7(G241											-1		R-	17	
	II	B.Tech. II Ser	nest	ter S				-		ninc	ation	ns N	ov/[Dec	c 201	9	
				ctric						aina	orir						
Max	(. M	arks: 70		CIIIC	aru				-2 LI	gine		ig)		Ţ	Time:	3 Ho	ours
,	Ansv	ver all five units	sby	choc	osing		que *****		fron	n ead	ch u	nit (t	5 x 14	1 = 7	70 Ma	rks)	
								NIT–									
1.	a)	Explain the c sketch.	onsti	uctio	nal 1	featu				e ph	ase	trans	form	er	with n	eat	7M
	b)	The emf per approximately and (ii) the ne	' 13 v	olts.	Calc	ulate	(i) th	ne nu	mbei	r of p	rima	ry an	d sec	conc	dary tu	irns	
		1.4T.						OR									7M
2.	a)	Explain the pe	rform	ance	of tr	ansfo		-	no loa	d co	nditic	on wit	h nea	at d	iagram	۱.	7M
	b)	Classify trans voltage on cor			sses	and	exa	mine	the	effec	t of	frequ	lency	/ ar	nd sup	ply	7M
								NIT-I									
3.	a)	Illustrate the evarious param		•				of a	trans	sform	ner a	nd d	escri	be	briefly	on	7M
	b)	A 240V/120V, 96.2%. It is									• •				•		
		Determine its					effic									v.	7M
4.	a)	Outline the puidentical single	•			•		st and	d exp	olain	how	it is o	cond	ucte	ed on t	two	7M
	b)	Define efficie efficiency a tra	-			sforr	ner	and	obta	in th	e co	onditi	on fo	or r	maxim	um	7M
_					.,					.1				,		•41	
5.		Describe abo relevant relation		•			ges a				•						14M
6.	a)	Outline the ne	eces	sity f	or pa	aralle		-	n of	trans	sforn	ners	and	des	scribe	the	
		necessary cor			•		•								_	_	7M
	b)	Explain open out its advanta					tages	S.		nece	essai	y dia	igram	ı. А	lso, po	oint	7M
7.	a)	Derive an ex condition for n						NIT-I e of		nduct	tion	moto	r an	d o	btain	the	7M
	b)	A three phase 3% at full load	e, 6 p	oole,	50 H		ductio	on m	otor I	nas a	a slip	of 1	% at	no	load a	and	7 101
		i) Synchronou															
		ii) No load spe						_									
		iii) Frequency															7M
		iv) Frequency			uner	nall		OR									<i>i</i> IVI

test

7M

7M

- 8. a) Explain the constructional feature and principle of operation of three phase induction motor.
 - b) Describe briefly on crawling and cogging of three phase induction motor with an illustration.

UNIT-V

9. A 15 kW, 400 V, 4-pole, 50 Hz, 3-phase star connected induction motor gave the following test results:

	No-load test	Blocked rotor
Line voltage	400 V	200 V
Line current	9 A	50 A
Power input	1310 watts	7100 watts

Stator and rotor ohmic losses at standstill are assumed equal.

Plot the induction motor circle diagram and determine

i) line current, power factor, slip, torque and efficiency at full load

- ii) maximum power output and maximum power input
- iii) slip at which maximum torque occurs
- iv) maximum torque and starting torque

14M

OR

10. Explain the different methods of speed control of a three phase induction motor. 14M

Hall	Ticl	ket Number :														
Code	e: 7 G	345										L.			R-	17
		3.Tech. II Ser	nest	er S	upp	lem	nent	ary	Exai	mina	atio	ns N	ov/	'Dec	201	9
					And	llog	Ele	ctro	onic	s-ll						
			(Ele	ctric	al a	nd E	lect	ronio	cs Er	ngine	eerir	ng)		-		.
		arks: 70 ver all five units	by	choc	ncina	one		stion	fron		chu	nit ()	5 v 1			3 Hours
7	11300		bby		Jan G		****			n eu			5 ~ 1	4 - /	0 100	K3 J
								NIT–								
1.	a)	What is an IC	-					•	•		•					7M
	b)	Explain in deta	ail the	e Bas	sic In	forma	ation	of O _l OR	o-am	p with	n rele	evant	exp	ressi	ons.	7M
2.	a)	Describe the I	deal	op-a	mp a	nd ex	kplair	n eac	h blo	ck in	deta	ul				7M
	b)	A Differential a	•						-						-	•
		Ad= 200. Let the	•		gnal	be V	1=10	50 µ\	/ and	V2=	950	μV. C	Comp	pute	the out	•
		voltage and C		ί.												7M
3.	2)	Draw the bloc	k dia	aran	n of (onora		NIT-I		r and	lovr	Jain i	te or	ach b	olock v	with
З.	a)	examples.	n uid	iyian		phere	aliona		pine		i exh	лаптт	15 60		JIUCK V	10M
	b)	A sine wave o	o nea	k val	lue 6	mvol	t and	2 K	Hz fr	eanei	ncv i	is anr	olied	to a	n on-a	
	0)	integrator. R1:	•							•	•		Jiiou	10 0	nopu	4M
		Ū			•			OR			•					
4.	a)	Explain the ope	eratio	n of a	inve	rting	and n	on-in	vertir	ng Op	-amp	o amp	lifier	with	examp	les. 10M
	b)	Examine the o	utput	of O	o-amj	o inte	grato	or circ	uit fo	r an a	applie	ed uni	t ste	p inp	ut signa	al. 4M
							U	IT-I								
5.	a)	Derive an exp	ressi	on fo	r a su	ubtrad	ctor.	Subtr	actor	is al	so ca	alled	differ	rence	e ampli	fier
		why?														4M
	b)	Explain the wo	rking	of So	chmit	t trigg	ger ci	rcuit ι OR	using	Op-a	mp v	with n	eces	sary	diagra	ms. 10M
6.	a)	Explanation of	f diffe	erent	Appli	icatio	ons of	f usin	g Op	-amp	o in c	letail.				6M
	b)	Derive an exp					•		•	•	mp	by dra	awin	ig ne	at circ	
		and assume a	ll init	ial va	lues	as z	ero(∖	′b=0,	Va=	0).						8M
								NIT-I	V							
7.	a)	Identify the fea									- 1- 1 -					4M
	b)	Draw the function timer and expl			•	of Iv	lono	stable	e and	I Asta	able	opera	ation	IS US	ing iCt	10M
				i ueta	an.			OR								10101
8.	a)	Explain the ba	isic p	rinci	ole ai	nd Li	st ou		appli	catior	ns of	PLL				10M
01	b)	Discuss about	•	•					•••							4M
	,							VIT-V								
9.	a)	Report the var	rious	spec	ificat	ions	of DA	AC/A	DC ir	n deta	ail.					4M
	b)	Explain the wo	orking	g prir	nciple	of R	-2R		er DA	C wi	th a	neat	diag	ram.		10M
		_					. –	OR			_					
10.	a)	Prepare the va							•				_			6M
	b)	Explain the wo	orking	g prir	lciple	of A	DCs·			ompa	rato	r with	a ne	eat d	lagram	n. 8M

	skat Numbar i	
	cket Number : R-17]
Code: 7	/GC43	_
	I B.Tech. II Semester Supplementary Examinations Nov/Dec 2019 Complex Variables and Special Functions	
	(Common to EEE & ECE)	
	Aarks: 70 Swer all five units by choosing one question from each unit (5 x 14 = 70 Marks)	
	UNIT–I	
1. a) Show that $s(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$	7M
b) If $cosh(u + iv) = x + iy$, prove that	
	(i) $\frac{x^2}{\cosh^2 u} + \frac{y^2}{\sinh^2 u} = 1$ (ii) $\frac{x^2}{\cos^2 v} - \frac{y^2}{\sin^2 v} = 1$	7M
	OR	
2. a	b) Evaluate $\int_{0}^{\infty} e^{-ax} x^{m-1} \sin bx dx$ in terms of Gamma function.	7M
b) Separate the real and imaginary parts of (i) $\sinh(x+iy)$ (ii) $\cosh(x+iy)$	7M
	UNIT–II	
3. a	Prove that the function $f(z)$ defined by $f(z) = \frac{x^3(1+i) - y^3(1-i)}{x^2 + y^2} (z \neq 0), f(0) = 0$ is	
	continuous and the Cauchy Riemann equations are satisfied at the origin, yet	
	f'(0) does not exist.	7M
b	Find the conjugate harmonic of $v(r,) = r^2 \cos 2 + 2$. Show that <i>v</i> is	
	harmonic.	7M
4 -	OR	
4. a	,	
	$f(z) = u + iv \text{ if } u - v = \frac{\cos x + \sin x - e^{-y}}{2(\cos x - \cosh y)} \text{ and } f\left(\frac{f}{2}\right) = 0.$	7M
b) Derive Cauchy-Riemann equations in polar coordinates.	7M
	UNIT-III	
5.	Find the Taylor's expansion of $f(z) = \frac{2z^3 + 1}{z^2 + z}$ about the point $z = i$.	14M

- 6. If f(z) is analytic inside a circle *C* with centre at *a*, then for z inside *C* prove that

$$f(z) = f(a) + f'(a)(z-a) + \frac{f''(a)}{2!}(z-a)^2 + \dots + \frac{f^n(a)}{n!}(z-a)^n + \dots + \frac{f^n(a)}{n!}(z-a)^$$

OR

Code: 7GC43

7.	a)	State and prove Residue theorem.	7M
	b)	Evaluate $\int_{0}^{\infty} \frac{\cos ax}{x^2+1} dx$.	7M
		OR	
8.	a)	Find the residue of $f(z) = \frac{z^2}{(z-1)^4(z-2)(z-3)}$ at its poles and hence evaluate	
		$\int_{C} f(z) dz$ where <i>C</i> is the circle $ z = 2.5$.	7M
	b)	Show that $\int_{0}^{2f} \frac{\cos 2_{\#}}{1 - 2a\cos_{\#} + a^{2}} d_{\#} = \frac{2f a^{2}}{1 - a^{2}}, (a^{2} < 1)$	7M
		UNIT-V	
9.		Find the bilinear transformation which maps the points $z = 1$, i, -1 onto the points	
		w = i, 0, -i. Hence find the image of $ z < 1$,	14M
		OR	

10. Show that the transformation effected by an analytic function w = f(z) is conformal at every point of the Z-plane where $f'(z) \neq 0$. 14M

_

UNIT–IV

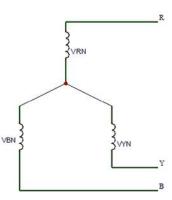
Hall Ticket Number :						
	,					R-17

Code: 7G244

II B.Tech. II Semester Supplementary Examinations Nov/Dec 2019

Electrical Circuits-II

(Electrical and Electronics Engineering)


Max. Marks: 70

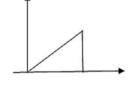
Time: 3 Hours

Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)

1. a) A symmetrical star connected system has $V_{RN} = 230 \ge 0$. The phase sequence is RYB. Find V_{RY} , V_{YB} , V_{BR} .

7M

b) The input power to a three-phase load is 10kW at 0.8 Pf. Two watt meters are connected to measure the power. Find the reading of higher reading wattmeter.
 7M

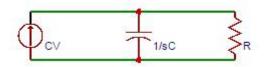

OR

2. a) The three impedances $Z_1 = 20 \angle 30$, $Z_2 = 40 \angle 60$, $Z_3 = 10 \angle -90$ are deltaconnected to a 400V, $3 - \emptyset$ system. Determine the phase and line currents. 7M

b) A single wattmeter is connected to measure reactive power of a three-phase, three-wire balanced load. The line current is 17A and line voltage is 440V. Calculate the power factor of the load if the reading of the wattmeter is 4488 VAR.

UNIT–II

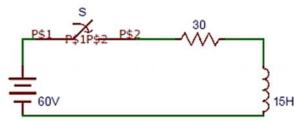
3. a) Find the function f (t) in terms of unit step function in the graph shown.

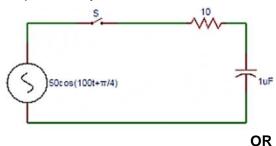


7M

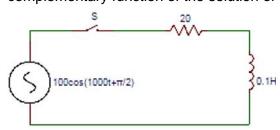
b) If u (t) = 1 for t >= 0 and u (t) = 0 for t < 0, determine the Laplace transform of [u (t) - u (t - a)]. 7M

OR

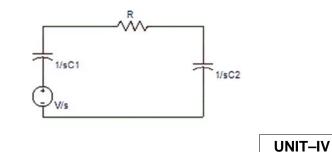

- 4. a) Determine the inverse transform of F (s) = $(s+5)/s(s^2+2s+5)$. 7M
 - b) The voltage across the resistor in the parallel circuit shown is?


7M

UNIT-III


5. a) A series R-L circuit with R=30 and L=15H has a constant voltage V = 60V applied at t = 0 as shown in the figure. Determine the current (A) in the circuit at t = 0+.

b) In the circuit shown below, the switch is closed at t = 0, applied voltage is v(t)=50cos (102t+ /4), resistance R = 10 and capacitance $C = 1\mu F$. The complementary function of the solution of 'i' is?



6. a) In the circuit shown below, the switch is closed at t = 0, applied voltage is v(t)=100cos (103t+ /2), resistance R = 20 and inductance L = 0.1H. The complementary function of the solution of 'i' is?

7M

b) For the circuit shown below, find the voltage across the capacitor C₁ at the time the switch is closed.

7M

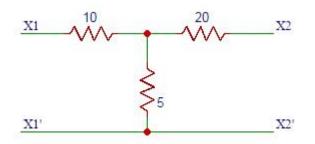
- 7. a) What is the Fourier cosine series of $f(x) = \frac{4 x}{2}$, where 0 < x < 7M
 - b) The function f is defined by $f(x) = e^x$ for -L < x < L. Find its Fourier series. 7M

OR

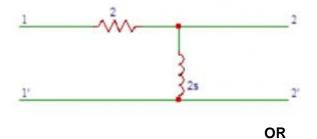
8. a) Compute the Fourier transform of the signal

$$\begin{aligned} x(t) &= \sum_{k=-\infty}^{\infty} f(t+2k), where \\ f(t) &= \begin{cases} t+1, & for & -1 \le t < 0 \\ 1-t, & for & 0 \le t < 1 \\ 0, & else \end{cases} \end{aligned}$$
7M

b) Compute the Fourier transform of the signal $x(t) = e^{-t} u(t)$.


7M

7M


7M

UNIT–V

9. a) In the circuit shown below, find the Z-parameter Z_{11} , Z_{12} , Z_{21} , Z_{22} .

b) Obtain the transfer function G_{21} (S) in the circuit shown below.

7M

7M

10. a) Consider the impedance function Z(s)=3(s+2)(s+4)/(s+1)(s+3). Find the value of R₁, R₂, C₁, C₂ and R after realizing by first Foster method.
b) Consider the polynomial P(s)=s⁴+3s²+2. Check whether the given polynomial P (s) is Hurwitz or not.
7M

Hall ⁻	Ticke	et Number :													
Code			<u> </u>				<u> </u>]			<u> </u>		R-17	
couc		B.Tech. II S	eme	este	r Su	pple	eme	nta	γE	xam	inat	ions	Nov	/Dec 2019	
				-1				-		Fie			,		
Мо	IX. N	1arks: 70	(Flec	frica	l an	d Ele	ectro	DIC	s Eng	ginee	ering))	Time: 3 I	Hours
			nits k	by ch	noosi	ng o		uest *****		rom	each	n unit	t (5 x	14 = 70 Marks	
1.	a)	Define Electi	ric Fi	led Ir	ntens	ity ar				expres	ssion	for e	electric	c field intensity	
		due to infinite			• ·										71
	b)	Define Gaus Gauss law fo						•					•	application of charge?	71
		Causs law lo		Iving		sypic	,00101	OF			,		unacc	onarge	/ 1
2.	a)	Derive the e	expre	essior	n for	elec	ctric	field	inte	nsity	due	to a	diffe	rential volume	
		element?													71
	b)	•												ond charge of	
		0.5µC is loca i) The origin								electi	ic ne	ia str	engin	, ⊑ al	71
		,,g		,		(,									
3.	a)		-	ssion	for	capa	acitar	nce	of a	para	llel p	olate	capa	citor with two	
		dielectric me													71
	b)	Derive the bo	ounda	ary c	onditi	ons	betwe			a hav	ing d	ielect	tric an	d conductor?	71
4.	a)	Derive an ex	voras	sion	for t	ha c	anaci	OF tance		a sh	orica	ما دع	nacito	r consisting of	
4.	a)	two concentr	•				•		5 01	a spi	ienca	ai ca	pacito	Consisting of	71
	b)		•		•					•				rs of a square	
						-			-	-				3 µC charge is	71
		installed at th	ie ce	nter	orthe	e squ		UNIT		ine i	otare	energ	jy stor	eu?	71
5.	a)	Derive the ex	kpres	sion	for e	nergy				gnetic	field	and	energ	y density?	71
	b)	Derive Biot-S	Sava	rt lav	v and	l rela	ate it	to A	mpe	res la	w. S	how	that t	he divergence	
		magnetic ind	luctio	n is a	alway	's zei	ro?								71
0	、		.,.					OF							
6.	a) b)	List the simila												ivart law? ilament on the	71
	b)				•			•						cated at x= -1,	
		y= 2. (ii) Find	d H if	both	filam	ents	are p	orese	nt?	_					71
-	、							JNIT							
7.	a)	if currents ar	•					een t	wo p	baralle	el cur	rent	carryır	ng conductors,	71
	b)	Derive an ex	pres	sion f	or a	torqu	e on	a clo	sed	recta	ngula	ır loo	p carr	ying current?	71
								OF	2						
8.	a)	Derive the ex	kpres	sion	for e	nergy	/ den	sity i	nar	nagne	etic fi	eld?			71
	b)		•				•	deve	lope	d in	a re	ectan	gular	closed circuit	
		carrying curr	ent I	mat	ΙΟΪΙΙΙ	ni tie		UNIT	_\/						71
9.	a)	State and ex	plain	the I	Poynt	ting t				erive	the n	eces	sary e	quations?	71
	b)	Write the Ma	-		-	-							-		71
								OF	8						
10.	a)				farad	ay's	laws	in el	ectro	omagi	netic	indu	ction i	n integral form	
	۲)	and pointing State and Ex			atioti	cally	indu			anda	lynar	nicoli	vindu	cod EME2	7N 7N
	b)		pialli	111 51	ลแจแ	cally		.eu c ****	.1711	anu (ynaf	nudil	y muu	COU LIVIE !	11

Hall	Tick	et Number :	
code:		R-17	
Joue.		B.Tech. II Semester Supplementary Examinations Nov/Dec 2019	
		Linear Control Systems	
May	< N.A.	(Electrical and Electronics Engineering) arks: 70 Time: 3 Ho	
		ver all five units by choosing one question from each unit (5 x 14 = 70 Marks)	5015

1.		UNIT-I Deduce the block diagram of the given signal flow graph. Also find the transfer	
		function using Mason's gain formula	
		Gris Griz	
		P(c) G11 G12 G13 G14 G15 C(S)	
		-H ₂	14
		OR	
2.		For the mechanical system shown below, derive the transfer function. Also draw	
		the force-voltage and force-current analogous circuits.	
		$f(t) \rightarrow B \qquad K_2 \qquad K_2$	
		$M_1 \rightarrow M_2 \rightarrow M_2$	
		Jania Province	
		B ₁ B ₂	14
3.		UNIT-IIObtain these of an unity feedback system whose open loop transfer	
		functions is $\frac{\operatorname{respons}}{G(s) = \frac{4}{s(s+5)}}$. The system is subjected to unit step input. Find the rise	
		time, peak time, settling time and peak over shoot	14
		OR	
4.		Derive the response of under damped second order system with unit ramp input	14
5.	a)	UNIT–III By Routh stability criterion determine the stability of the system represented by	
0.	u)	characteristics equation $9s^5 - 20s^4 + 10s^3 - s^2 - 9s - 10 = 0$. Comment on the location of	
		characteristic equation.	10
	b)	Define : Asymptotic stability; BIBO stability	41
6.			
0.		A unity feedback system has an open loop transfer function $G(s) = \frac{K}{s(s^2 + s + 12)}$	
		Sketch the root locus and determine the dominant closed loop poles with $ = 0.5$ Determine the value of K at this point.	1 4 1
		UNIT-IV	14
7.		in loop transfer function of a unity feedback system is given by	
		The ope $G(s) = \frac{1}{s(1+s)^2}$. Sketch the polar plot. Determine gain margin and phase margin	14
		OR	1-11
8.		Derive the frequency domain specifications of a second order system	14
_		UNIT-V	
9.		A unity feedback system has an open loop transfer function of $G(s) = \frac{k}{s(2s+1)}$.	
		Design a suitable lag compensator so that the phase margin is 40° and steady	
		state error for ramp input is less than or equal to 0.2 OR	141
10.	رد	Compute state transition matrix e^{At} where $A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$	
10.	a)	Compute state transition matrix e where $A = \begin{bmatrix} -2 & -3 \end{bmatrix}$	71
		$\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$	
	b)	Find the eigen values of the matrix given below: $A = \begin{bmatrix} 0 & 0 & 1 \\ 6 & 11 & 6 \end{bmatrix}$	
		[-6 -11 -6]	71

Page **1** of **1**