	Hall Ticket Number :											
	Code: 7GC43											
	II B.Tech. II Semester Supplementary Examinations November 2023											
	Complex Variables & Special Functions											
	(Common to EEE &ECE) Max. Marks: 70 Time: 3 Hours											
	Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)											
	UNIT-I											
1.	a) Symmetry of Beta function $B(m, n)=B(n, m)$	7M										
	b) Evaluate $\int_{0}^{1} \frac{x^2}{\sqrt{1-x^5}} dx$ in terms of B function											
	$_{0}\sqrt{1-x}$ OR	7M										
	f.											
2.	Prove that $\int_{0}^{\frac{f}{2}} \sin^2 u \cos^4 u d_{\mu} = \frac{f}{32}$	14M										
	UNIT-II											
3.	Determine D such that the function $f(x) = \frac{1}{1} \log \left(\frac{2}{2} + \frac{2}{2} \right) + \frac{1}{2} \left(\frac{px}{2} \right)$ be an applied											
5.	Determine P such that the function $f(z) = \frac{1}{2}\log(x^2 + y^2) + i Tan^{-1}\left(\frac{px}{y}\right)$ be an analytic											
	function OR											
4.	Prove that z^n (n is a positive integer) is analytic and hence find its derivative.	14M										
F	UNIT-III Expand Lag z, by Taylor's series about z-1	4 4 5 4										
5.	Expand $Log z$ by Taylor's series about z=1. OR	14M										
6.												
0.	Evaluate $\int_{(0,0)}^{(1,1)} (3x + 4xy + ix^2) dz$ along $y = x^2$	14M										
		1-111										
	UNIT-IV											
7.	Find the poles of the function $\frac{z+1}{z^2(z-2)}$ and Residues at the poles	14M										
	OR											
8.	Evaluate $\oint \frac{4-3z}{z(z-1)(z-2)} dz$ where c is the circle $ z = \frac{3}{2}$ using Residue theorem.	1 4 1 4										
01	$\int_{c} z(z-1)(z-2)^{az}$ where the original probability is a single conduct theorem.	14M										
	UNIT-V											
9.												
	Under the Transformation $w = \frac{1}{z}$ find the image of the circle $ z - 2i = 2$	14M										
40	OR 4											
10.	Show that the function $w = \frac{4}{z}$ transforms the straight line x=c in the z-plane into a circle	14M										
	in the w-plane.											

	Hal	I Ticket Number :																7
L	Coc	le: 7G244				_[J		<u>]</u>				R-1	7	
		II B.Tech. II Ser	nest	ter S	upp	olem	nent	ary	Exai	mino	atio	ns I	Nc	over	nb	er 2023	3	
													,					
	Мс	ax. Marks: 70	(Ele	ectri	cal	and	Elec	tron	ics E	ngir	ieeri	ng)		-	lime: 3	Hours	
		wer any five full qu	vestic	ons b	y ch	ioosi	-	ne q		on fr	om e	eac	:h	unit (
								NIT-										
1.	a)	Prove $I_L = 3 I_{ph}$ for :							•									7M
	b)	Illustrate the readi	-			attme	eter's	on a	a 3-v	/ire,	240\	/ sy	/ste	em w	vith	balance	ed star	
		connected load of	10∠3	0°.				OR										7M
2.	a)	A three phase bal	ance	d sv:	stem	sup	olies	-	/ to	a de	lta c	onn	ec	ted lo	oad	whose	phase	
	α)) A three phase balanced system supplies 230V to a delta connected load whose phase impedances are equal to (3.54+j3.54) . Determine the line current and draw the phasor																
		diagram											7M					
	b)	An induction motor find total power. If				•	•											
		power and power fa					v2- v	51.00	ucic				a	aotiv	υp	0001, 10		7M
3.	a)	State and Prove In	itial v	مىاد	theo	rom a		NIT-I		theo	rom							714
э.	a) b)	Determine the La																7M
	0)	i) $f(t) = (4t^3 + t^2 - 6t)$				^{-4t} sin		onon	ing i	arroti	0110							7M
								OR										
4.		Formulate the step	o resp	oons	e of	serie	s RL	C Ci	rcuit	usinę	g Lap	olac	e -	Frans	sfor	m.		14M
							U	IIT–I	II									
5.		Derive the express	sion f	or cu	urren	t res	pons	e of OR	RL se	eries	circu	uit v	vitł	n a D	C e	excitation	n.	14M
6.		Derive the express	ion fc	or cur	rent	respo	onse	of R	C seri	ies ci	rcuit	with	h a	sinu	soic	lal excita	ation.	14M
							UN	IIT-I	V									
7.	a)	Discuss properties	s of F	ourie	er tra	nsfo			-									7M
	b)	Explain the evalua	tion o	of trig	gono	metr	ic Fo	urier	coef	ficie	nts							7M
								OR										
8.	a)	Determine Fourier																7M
	b)	Determine the exp	oner	ntial F	⁻ ouri	er se	eries	for th	ne ha	lf wa	ve re	ectif	fier	sine	e wa	ive		7M
							U	VIT-V	/									
9.	a)	Test the function	H(s)	$=4s^{\circ}$	⁵ + 2.	$s^{5} + 1$	$7s^4$ -	$+8s^3$	+16s	$^{2} + 6$	<i>s</i> + 3	is l	Hu	rwitz	or	not		7M
	b)	Explain the neces	sary	cond	ition	s for	a tra	nsfei	func	tion								7M
								OR										
0.		Test the positive r	ealne	ess o	f the		•			36)								
						F(S	$) = \frac{0}{0}$	$\frac{S^2}{S^2}$ +	25 + 35 +	49)								14M
								**										17171

L	Cor	le: 7G345											
	CUL	II B.Tech. II Semester Supplementary Examinations November 2023											
		Analog Electronics–II											
		(Electrical and Electronics Engineering)											
	-	IX. Marks: 70 Time: 3 Hours											
	Ans	wer any five full questions by choosing one question from each unit (5x14 = 70 Marks)											
		UNIT–I											
1.	a)	With a neat circuit diagram explain basic operational amplifier circuit	61										
	b)	Describe the internal block diagram of an Op-amp and explain each block in detail											
		OR											
2.	a)	Derive the gain of non inverting amplifier	7N										
	b)	Design an non inverting Op Amp with gain 120.	7N										
~	-)		71										
3.	a)	Illustrate the operation of inverting summer circuit using IC 741.	7N										
	b)	Illustrate the operation of Subtractor circuit using IC 741.	7N										
		OR											
4.	a)	Discuss the operation of Adder-Subtractor using Op-Amp.	7N										
	b)	Consider the lossy integrator with components $R_1=10$ K , $R_F=100$ K , $C_F=10$ nF.	71										
		Determine the lower frequency limit of integrator.	7N										
		UNIT–III											
5.	a)	Explain the operation of Precision Half-wave Rectifier.	7N										
	b)	Discuss the operation of Log Amplifier.	7N										
		OR											
6.	a) Design a triangular wave generator using comparator and integrator to oscillate at 4KHz												
		and peak to peak voltage of 7V. Use the Op-Amp with $\pm 15V$ power supply and make											
		necessary assumptions.	6N										
	b)	Explain how astable multivibrator can be used as Square wave generator.	8N										
		UNIT-IV											
7.	a)	Draw the pin diagram of IC 555 and list out its applications	6M										
1.	b)	Explain the basic principle of operation using block schematic of a PLL.	8N										
	0)	OR	OIV										
8.	2)	Discuss how PLL can be used as frequency translator.	7N										
0.	a) b)	How a monostable multivibrator can be used as missing pulse detector? Explain.	7N										
	b)	How a monostable multivibrator can be used as missing pulse detector? Explain.	7 10										
		UNIT-V											
9.	a)	With help of neat diagram explain the operation of counter type ADC.	7N										
	b)	Illustrate the operation of weighted resistor DAC.	7N										
		OR											
		What are the advantages of SAR ADC? Explain its operation	7N										
0.	a)	What are the advantages of OAN ADO: Explain its operation	7 1 1										
0.	a) b)	Construct the Inverted R-2R DAC and explain in detail	7N										