	Hal	ll Ticket Number :												1
	Coc	de: 7GC42							J]		R-17	
		II B.Tech. II Ser	nestei	r Sup	plem	nent	ary I	Exar	ninc	atior	ns M	ay / J	une 2024	
					babi		-					·		
				(Comr	non	to C	E &	ME)					
		ax. Marks: 70 swer any five full qu	<i>lostion</i>	s by	choosi	na o	ne a	uasti	on fr	om e	ach	unit (F	Time: 3 Hours	
	ΛI IS	swel ally live foll qu	J e siioi i.	з Бу			****	OGSII	OHH	OIII C	ucn	01111 (3	14 - 70 Marks j	
						U	NIT-	-l						
1.	a)	a) State and prove Addition theorem on probability for two events.												8M
	b)	If two dice are throw , Find the probability of getting a sum is10												6M
							OR							
2.	a)	a) A card is drawn from a pack of 52 playing cards. What is the probability of drawing												
		black card?												6M
	b)	State and prove B	aye's tl	heore	m.									8M
						UI	NIT-I	I						
3.	a)													
		Find P(x 1) and P(x > 2)										7M		
	b)	Find the continuous probability function $f(x)=k$ x^2 e^{-x} when $x = 0$ find (i) k (ii) mean											7M	
		OR												
4.	a)	 In a normal distribution, 7% are under 35 and 89% are under 63. Find the mean and the standard deviation of the distribution. 									7M			
	b)	The weekly wages with a standard de will be (i) Between	viation	of R	s.5. Es	timat	e the	nun	nber	of wo	orkers	s whos	e weekly wages	7M
						UN	IIT–I	II						
5.	a)	The variance of population is 2. The size of the sample collected from the population is												7M
		169. What is the s	tandard	d erro	or of m	ean								/ IVI
	b)	A population cons which can be dra mean and standa distribution of mea	awn wi ard de	ithout	repla	ceme	nt fr	om 1	this	popu	latior	n. Find	the population	7M
							OR							
6.		The mean and sta 67.45 and 2.92. F marks of the stude	ind (i) 9	95%	and (ii				•		•			14M
						UN	IIT–I	V						
7.		A sample of 900 deviation 2.61cm mean 3.25cm (~= its mean is unknown	$(\dagger = 2)$.61)	is the	samp	ole ha	as be	een t	aken	from	n a lar	ge population of	14M
		armalo					OR							

Code: 7GC42

8. A manufacturer of electronic equipment subjects sample of two completing brands of transistors to an accelerated performance test. If 45 of 180transistors of the first kind and 34 of 120 transistors of the second kind fail the test. What he conclude at the level of significance $\Gamma=0.05$ about the difference between the corresponding sample proportions.

14M

UNIT-V

9. The number of automobile accidents per week in a certain community are as follows 12, 8, 20, 2, 14, 10, 15, 6, 9, and 4. Are these frequencies in agreement with the belief that accident conditions were the same during this 10 week period

14M

OR

10. In an investigation on the machine performance, the following results are obtained

	No. of units inspected	No. of defectives
Machine I	375	17
Machine II	450	22

Test whether there is any significant performance of two machines at = 0.05

14M

Hall Ticket Number :										
Code: 7G541	I	1.	I	1	<u>L</u>	I		1	R-17	

II B Tech II Semester Supplementary Examinations May/June 2024

		II B.Tech. II Semester Supplementary Examinations May/June	2024		
		Applied Thermodynamics-I			
		(Mechanical Engineering)			
		ax. Marks: 70 swer any five full questions by choosing one question from each unit (5x14: ************************************	ne: 3 H = 70 M		
5			Marks	СО	BL
		UNIT-I			
1.		A Diesel engine has a compression ratio of 15 and heat addition at constant pressure takes place at 6% of the stroke. Find the air standard efficiency of the engine. (Take = 1.4)	14M	CO1	L3
2		OR			
2.	a)	List any three principle factors that influence engine performances? And explain them.	7M	CO1	L1
: 1 : : : :	b)	What are Air standard cycles? What are the assumptions for Air standard cycles?	7M	CO1	L1
5		UNIT-II			
3.		Illustrate the working principle of a battery ignition system with a neat sketch.	14M	CO2	L4
5		OR			
4.	a)	Explain Thermosyphon cooling system with a neat diagram.	7M	CO2	L2
3	b)	Sketch and explain the port timing diagram for 2 stroke SI engine.	7M	CO2	L2
5	·	UNIT-III			
5.		Elaborate the differences between normal and abnormal combustion? Explain it with one or two parameters.	14M	CO3	L2
5		OR			
6.	a)	What are different ill effects of knocking?	7M	CO3	L1
<u></u>	b)	Suggest the methods to minimize knocking in SI engines?	7M	CO3	L2
		UNIT-IV			
7.		A petrol engine uses 0.27 Kg of fuel per B.P hour. C.V of the fuel is 44,000kJ/kg and Mech. Efficiency is 80% and compression ratio is 5.6, calculate a) brake thermal efficiency b) Indicated thermal efficiency c) Ideal			
5		air std Efficiency d) Relative efficiency based on B.P and I.P basis.	14M	CO4	L3
<u>'</u>		OR			
8. i		Explain the various engine performance parameters in detail. UNIT-V	14M	CO4	L2
9.	a)	List the various types of rotary compressors?	7M	CO5	L1
	b)	Discuss with a neat sketch, the working of a roots blower.	7M	CO5	L2
		OR			
10.		Derive an expression for the isothermal efficiencies of a reciprocating	4 45 5	005	

compressor in terms of the pressure ratio.

CO₅

14M

L6

Hall Ticket Number :						D 17
						K-I/

Code: 7G542

	CU	ue. 76342	0004		
		II B.Tech. II Semester Supplementary Examinations May/June	2024		
		Fluid Mechanics and Hydraulic Machinery			
		(Mechanical Engineering)			
	M	ax. Marks: 70 Ti	me: 3 H	Hours	
	An	nswer any five full questions by choosing one question from each unit (5x14	4 = 70 M	arks)	
		******		•	
			Marks	CO	BL
		UNIT-I			
1.		The water is flowing through a tapering pipe having diameters 300mm and			
		150mm at sections 1 and 2 respectfully. The discharge through the pipe is			
		40liters/sec. The section 1 is 10m above datum and section 2 is 6m above			
		datum. Find the intensity of pressure at section 2 if that at section 1 is			
		400kn/m ² .	14M	CO1	L3
		OR			
2.	a)	What are the important fluid properties? Write their units?	7M	CO1	L1
	b)	Distinguish between simple manometer and a differential manometer.	7M	CO1	L2
	,	UNIT-II			
3.		An orifice mater with orifice diameter 15cm is inserted in a pipe of 30 cm			
٥.		diameter. The pressure difference measured by a mercury oil differential			
		manometer on the two sides of the orifice meter gives a reading of 50cm of			
		mercury. Find the rate of flow of oil of specific gravity 0.9 when the coefficient			
		of discharge of the meter is 0.64.	14M	CO2	L3
		OR			
4.		Derive the Euler's equation of motion along a streamline	14M	CO2	L2
т.		UNIT-III	1-111	002	LZ
_					
5.		A jet of water of dimeter 60mm moving with a velocity of 40m/s strikes a			
		curved fixed plate tangentially at one end at an angle of 30° to horizontal. The jet leaves the plate at an angle of 20° to the horizontal. Find the force exerted			
		by the jet on the plate in the horizontal and vertical directions.	14M	CO3	L3
		·	14111	CO3	LJ
_		OR			
6.		What is a runoff river plant? What are the different parts and arrangements of	4 4 5 4	CO2	1.0
		such plants? Draw a neat sketch and explain.	14101	CO3	L2
		UNIT-IV			
7.		An axial flow turbine operates under a head of 21.8m and develops 21MW			
		when running at 140 RPM. The external runner diameter is 4.5m and the hub			
		diameter is 2m. If the hydraulic efficiency is 94% and the overall efficiency is			
		88%, determine the inlet and outlet blade angles.	14M	CO4	L3
		OR			
8.		With a neat sketch explain the working principle of Pelton wheel.	14M	CO4	L2
		UNIT-V			
9.		The internal and external diameters of the impeller of a centrifugal pump are			
		30 cm and 60 cm respectively. The pump is running at 1000 r.p.m. The vane			

9. The internal and external diameters of the impeller of a centrifugal pump are 30 cm and 60 cm respectively. The pump is running at 1000 r.p.m. The vane angles at inlet and outlet are 20° and 30° respectively. The water enters the impeller radially and velocity of °ow is constant. Determine the work done by the impeller per unit weight of water.

14M CO5 L3

OR

10. Define a centrifugal pump. Explain the working of a single-stage centrifugal pump with sketches

14M CO5 L2