Hall Ticket Number:							_
						R-17	

Code: 7G542

II B.Tech. II Semester Supplementary Examinations May / June 2022

Fluid Mechanics and Hydraulic Machinery

(Mechanical Engineering) Max. Marks: 70 Time: 3 Hours Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)Marks UNIT-I Define dynamic viscosity? How does viscosity of fluid and Gas vary with temperature 1. a) 6M An oil of viscosity 5 poise is used for lubrication between a shaft and sleeve. The diameter of shaft is 0.5 m and it rotates at 200 rpm. Calculate the horsepower lost in the oil for a sleeve length of 100 mm. The thickness of the oil film is 1.0 mm. 8M 2. Derive the expression for meta-centre height of a floating body? 14M UNIT-II 3. Explain Hydraulic Gradient Line and Total Energy Line. a) 4M b) A Venturimeter of 150mm X 75mm is installed in a horizontal pipeline carrying an oil of specific gravity 0.90. The difference of pressure head between the inlet and throat recorded by U tube differential manometer is 175mm of mercury. Determine the discharge through the pipe taking C_d the meter as 0.97. 10M OR 4. Derive an equation for discharge of a Venturimeter? Explain why C_d of a Venturimeter is more than that of orifice meter. 14M UNIT-III What do you mean by impact of jet? Explain? Derive an expression for force exerted by the jet 5. a) on a stationary vertical plate? 6M A nozzle of 56 mm diameter delivers a stream of water at 30 m/sec perpendicular to a plate that moves away from the jet at 8 m/sec. Find the work done and efficiency of the jet 8M 6. Derive an expression for the force exerted by a jet striking the curved plate at one end tangentially when the plate is symmetrical. 14M **UNIT-IV** What is meant by cavitations? What is Thomas's cavitations factor and what is its significance for 7. a) turbines? 6M b) Explain what you understand by governing of a hydraulic turbine with neat sketches. 8M OR What is a surge tank and what are the uses of it in a hydropower turbine installation? 8. a) 6M A turbine develops 7355 Kw under a head of 24.7m at 210 rpm. What is its specific speed? If this turbine is tested in the laboratory where the head available is only 7.5m, what power will it develop and at what speed? 8M UNIT-V What is a reciprocating pump? Describe the principle and working of a reciprocating pump with a 9. a) neat sketch? 8M Define indicator diagram? How will you prove that area of indicator diagram is proportional to the b) 6M work done by the reciprocating pump? OR A centrifugal pump having outer diameter equal to two times the inner diameter and running at 10. 1200 r.p.m. works against a total head of 75m. The velocity of flow through the impeller is constant and equal to 3m/s. The vanes are set back at an angle of 30o at outlet. If the outer diameter of the impeller is 600mm and width at outlet is 50mm, determine: (a) vane angle at inlet, (b) workdone per second by impeller, (c) manometric efficiency. 14M

Hall Ticket Number :						D 17	_
Code: 7G543						K-1/	_

II B.Tech. II Semester Supplementary Examinations May/June 2022

Kinematics of Machinery

(Mechanical Engineering)

Max. Marks: 70 Time: 3 Hours

Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

UNIT-I

1. a) What is redundant degrees of freedom of a mechanism

om of a mechanism 7M
n a machine? 7M

b) In what way a mechanism differ from a machine?

OR

2. Sketch and explain the various inversions of a slider crank chain.

14M

Marks

UNIT-II

3. The crank of a slider crank mechanism rotates clockwise at a constant speed of 300 r.p.m. The crank is 150 mm and the connecting rod is 600 mm long. Determine: a. Linear velocity and acceleration of the midpoint of the connecting rod, and b. angular velocity and angular acceleration of the connecting rod, at a crank angle of 45° from inner dead centre position.

14M

OR

- 4. The crank and connecting rod of a theoretical steam engine are 0.5 m and 2m long respectively. The crank makes 180 r.p.m. in the clockwise direction. When it has turned 45° from the inner dead centre position, determine:
 - 1. velocity of piston, 2. angular velocity of connecting rod, 3. velocity of point E on the connecting rod 1.5 m from the gudgeon pin, 4. velocities of rubbing at the pins of the crank shaft, crank and crosshead when the diameters of their pins are 50 mm, 60 mm and 30 mm respectively, 5. position and linear velocity of any point G on the connecting rod which has the least velocity relative to crank shaft.

14M

UNIT-III

5. Two shafts are connected by a universal joint. The driving shaft rotates at a uniform speed of 1200 r.p.m. Determine the greatest permissible angle between the shaft axes so that the total fluctuation of speed does not exceed 100 r.p.m. Also calculate the maximum and minimum speeds of the driven shaft.

14M

OR

6. a) Derive the condition for correct steering.

7M

Determine the greatest permissible angle between the axes of the two shafts which are connected by a Hooke's joint if the maximum variation in the speed of the driven shaft is 8 % of the mean speed. The driving shaft is rotating at a uniform speed of 500 r.p.m. Also find the maximum and the minimum speeds of the driven shaft.

Code: 7G543

UNIT-IV

7. Derive an expression for the minimum number of teeth required on the wheel in order to avoid interference in involute gear teeth.

14M

OR

8. The arm of an epicyclic gear train rotates at 100 r.p.m in the anti-clockwise direction. The arm carries two wheels A and B having 36 and 45 teeth respectively. The wheel A is fixed and the arm rotates about the centre of wheel A. Find the speed of wheel B. What will be the speed of B, if the wheel A instead of being fixed, makes 200 r.p.m. clockwise?

14M

UNIT-V

- 9. A cam is to give the following motion to a knife-edged follower:
 - 1. Outstroke during 60° of cam rotation;
 - 2. Dwell for the next 30° of cam rotation;
 - 3. Return stroke during next 60° of cam rotation, and 4. Dwell for the remaining 210° of cam rotation.

The stroke of the follower is 40 mm and the minimum radius of the cam is 50 mm. The follower moves with uniform velocity during both the outstroke and return strokes. Draw the profile of the cam when

- (a) the axis of the follower passes through the axis of the cam shaft, and
- (b) the axis of the follower is offset by 20 mm from the axis of the cam shaft.

14M

OR

- 10. A cam with 30 mm minimum radius is rotating clock wise at 1200 rpm to give the following motion to a roller follower of 20 mm radius.
 - i) Lift = 25 mm
 - ii) Follower rise during 120° cam rotation with simple harmonic motion.
 - iii) Follower to dwell for 60°cam rotation.
 - iv) Follower to return during 90° cam rotation with uniform acceleration and deceleration.
 - v) Follower to dwell for remaining period.

Construct the profile of the cam and determine the maximum velocity and acceleration during rise and return.

Hall Ticket Number: R-17 Code: 7GC42 II B.Tech. II Semester Supplementary Examinations May/June 2022 **Probability and Statistics** (Common to CE, ME & CSE) Max. Marks: 70 Time: 3 Hours Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)Marks UNIT-I 1. a) Given P(A)=1/4, P(B)=1/3 and P(AUB)=1/2, then evaluate (i) P(A/B), (ii) P(B/A), (iii) $P(A \cap B^c)$, (iv) $P(A^c/B^c)$ 8M b) A card is drawn from a pack of 52 playing cards. What is the probability of drawing black 6M card. OR 2. a) A class consists of 6 girls and 10 boys. If a committee of 3 is chosen at random from the class, find the probability that (i) 3 boys are selected, (ii) exactly 2 girls are selected. 8M b) Two dice are thrown and their sum is 7. Find the probability that at least one of the dice shows up 2 6M **UNIT-II** 3. a) A die is thrown 6 times. If getting an even number is a success, find the probabilities of (i) at least one success (ii) 3 successes (iii) 4 successes 7M b) A continuous random variable x has a probability density function $f(x) = \begin{cases} \frac{(x+1)}{2}, -1 \le x \le 1\\ 0 \text{ else where} \end{cases}$ represents the density of a random variable x, then find $P(X \le 0)$, mean and variance. 7M OR For the normal distribution with mean 2 and standard deviation 4, evaluate (i) P(-6 < x < 3), (ii) $P(x \ge 5)$ and (iii) P(-4 < x < 4)UNIT-III 14M 5. a) The variance of population is 2. The size of the sample collected from the population is 7M 169. What is the standard error of mean b) A population consists of 5, 10, 14, 18, 13, 24. Consider all possible samples of size 2 which can be drawn without replacement from this population. Find the population mean 7M and standard deviation, and mean and standard deviation of the sampling distribution of means. OR 6. a) A random sample of 100 teachers in a large metropolitan area revealed a mean weekly salary of Rs.487 with a standard deviation rs 48. With what degree of confidence can assert that the average weekly salary of all teachers in the metropolitan area is between 472 to 502? 7M b) What is the size of the smallest sample required to estimate an unknown proportion to within a maximum error of 0.06 with at least 95% confidence.

4.

Code: 7GC42

UNIT-IV

7. In a random sample of 60 works, the average time taken by them to get work is 33.8min with a S.D of 6.1 min can we reject the null hypothesis $\sim =15150$ min in the favour of alternative hypothesis $\sim >15150$ at 0.05 level of significance.

14M

OR

8. A manufacturer of electronic equipment subjects sample of two completing brands of transistors to an accelerated performance test. If 45 of 180transistors of the first kind and 34 of 120 transistors of the second kind fail the test. What he conclude at the level of significance $\Gamma=0.05$ about the difference between the corresponding sample proportions.

14M

UNIT-V

9. The following data give the number of air-craft accidents that occurred during the various days of a week

Day	Mon	Tue	Wed	Thu	Fri	sat
No.of accidents	15	29	13	12	16	15

Test whether the accidents are uniformly distributed over the week.

14M

OR

10. Two random sample drawn from two normal populations have the variable values as below

Sample1	19	17	16	28	22	23	19	24	26			
Sample2	28	32	40	37	30	35	40	28	41	45	30	36

Obtain the estimate of the variance of the population and f test whether the two population have the same variance.

14M

	На	all Ticket Number :													_
	Co	ode: 7G541												R-17	
	CO	II B.Tech. II Sei	meste	r Supp	olen	nent	ary	Exa	min	atio	ns M	ay/J	une 2	2022	
			Δ	pplie				•							
	M	ax. Marks: 70		(Me	chai	nica	l Eng	gine	ering	1)			Time	e: 3 Hours	
		nswer any five full qu	uestions	by ch	noosi	_	ne q ****		on fr	om e	each	unit (
					UN	IT–I									Marks
1.	a)	Compare OTTO, DIE	ESEL, a	nd Dua			nside	ering							
		i) Same compression				-				, .					4084
	b)	ii) Same maximum p Draw P-V and T-S d			-		e and	sam	ie he	at rej	ection	1.			10M 4M
	D)	Diaw P-V and 1-3 u	iagrams	oi Die		ycie.)R									4 1VI
2.		Explain the various I	osses ir	nvolved			cycle	es wit	th the	help	of su	ıitable	sketch	wherever	
		applicable.													14M
•	,	D:				IT–II									-1.4
3.	a) b)	Discuss about i) Soli Explain the following	•	•		•		• •			•		etom		7M 7M
	D)	Explain the following	System	15. I <i>) F</i> II	•)R	Syst	CIII, I	i) iviis	st Luc	nicati	OII Sys	SIGIII		/ IVI
4.		Why is ignition requ	uired in	an I.C			Ехр	lain	the c	onstr	uctio	n and	workir	ng of a bat	
		system with a neat s	ketch. L	ist out			ages								14M
_	- \	Otata tha cariaca	.			T–III				de les					
5.	a)	State the various p diagram and explain		of com	busti	on in	SI	engır	ne w	tn ne	elb of	press	sure-cr	ank angle	8M
	b)	Discuss about Norm	al comb	ustion	and a	Abno	rmal	coml	bustic	on.					6M
				_)R									
6.	a)	What are the basic engine variables of t				ıfluen	ice th	ne fla	ame	spee	d? Di	scuss	the in	fluence of	8M
	b)	What do you unders combustion?	tand by	octane	num	ber?	Wha	ıt is it	ts sig	nifica	nce ir	n SI er	ngine		6M
					UNI	T–IV									
7.	a)	A single cylinder 4-s	•		_				•						
		is 800mm and rope reads 30N. If the eng											•	•	6M
	b)	Discuss about variou			•					•			ongc		8M
	,		J	•)R									
8.	a)	Six cylinder, four str	•	•	-		_								
		compression ratio of is 55% when the in					•							•	
		value of fuel and fu		•				•		_					
		2500rpm.													8M
	b)	Explain the air box n engines.	nethod f	or the	meas	urem	ent c	of air	cons	umpt	ion in	intern	al com	bustion	6M
						T–V									
9.	,	Compare Rotary and	-			-									7M
	b)	List out the difference	es betw	een ax			mpre	essor	s and	cent	rituga	al com	presso	ors.	7M
10.	a)	Classify Rotary com	oressor	S.	•)R									4M
	b)	Explain the construction			king r	orinci	ole o	f cer	ntrifuc	gal co	mpre	essor v	with ne	eat sketch.	
	,	Draw its velocity tria			• .				-	•	•				10M

	П	all ficket Number.									ı	D 17	
	Со	de: 7G246										R-17	
		II B.Tech. II Semes	ter Supp	olem	ent	ary I	Exar	ninc	ation	s May /	/ J	une 2022	
		Elec	trical a					_		ering			
			(Me	chai	nica	l Eng	gine	ering))			T' 0.11	
		.ax. Marks: 70 nswer any five full questi	ons by ch	noosi	na o	ne a	uesti	on fr	om e	ach unit	. 15	Time: 3 Hours $\times 1.4 = 70$ Marks \times	
	7 (1	1344C1 arry rive roll questi	Olis Dy Ci	10031	_	****	OCSII	01111	OIII C	acii oilii	U	X14 - 70 Marks j	
													Marks
1	a)	Define the following terr	nc 1 Volt		IT-I	rront	2 D	014/01	· 1 🗀	oorav			8M
١.	a) b)	Define the following terr State ohm's law and its		•	2. Cu	пеп	Э. Г	owei	4.	leigy			6M
	D)	State Utilit's law and its	IIIIIIIIIIIIIII		R								Olvi
2.		Four resistors of 2 ohm	3 ohm			5 ohr	m red	enact	tively	are con	ne	cted in narallel	
۷.		What potential difference						•	•				
		may be absorbed?		•			J	•					14M
				UNI	T–II								
3.	a)	With neat diagrams exp	lain the w	orkin	g pri	ncipl	e of	DC I	Motor				8M
	b)	What is back EMF?											6M
				C	R								
4.	a)	Explain about losses of											8M
	b)	Draw and explain variou	us charact	erist	ics of	DC	gene	rato	rs				6M
						_							
_	- \				T–III			,					71.4
5.	a)	Describe the construction			•								7M
	b)	Explain working principl	e of opera	_	_	ngle	pnas	se ir	ansto	rmer			7M
6		Evalois Open circuit on	d Chart ai)R	00.0	oina	ما مر ما		ranafarm		with singuit	
6.		Explain Open circuit and diagrams.	u Short Cii	Cuit	iesis	ona	Sing	ie pi	เลรย เ	ransionii	ıeı	with circuit	14M
		and growner											
				UNI	T–IV								
7.	a)	Explain construction of	Bipolar Ju	nctio	n Tra	ansis	tor w	ith fi	gures				10M
	b)	Draw the characteristics	s of BJT										4M
				C	R								
8.	a)	Explain how a Transisto	or work as	an a	mplif	ier.							7M
	b)	Explain about frequency	respons	e of a	a CE	amp	lifier.						7M
				UNI	T–V								
9.		Explain the principle of	dielectric		•	ith re	leva	nt dia	agram	1			14M
)R					_		_	
10.		What are the functions		•		acce	elera	ting a	anode	e in the C	;R7	-	8M
	b)	Explain the various app	lications o	of CR	0								6M

Hall Ticket Number :							
Code: 7GC41						R-17	

II B.Tech. II Semester Supplementary Examinations May/June 2022

Environmental Science

(Common to CE & ME)

			Marks
		UNIT-I	
1.	a)	What is the scope of environmental studies?	7M
	b)	Summarize the need for public awareness about environment.	7M
		OR	
2.	a)	Define environment. Explain the segments of an environment.	7M
	b)	Explain the multidisciplinary nature of environmental studies.	7M
		UNIT-II	
3.	a)	Describe the commercial and ecological uses of forest resources.	7M
	b)	What are renewable and non-renewable energy resources?	7M
		OR	
4.	a)	Define drought. Outline the effects of drought.	7M
	b)	Describe the soil conservation methods.	7M
		UNIT-III	
5.	a)	Explain the food chain with examples.	7M
	b)	Discuss the salient features of forest ecosystem.	7M
		OR	
6.	a)	Discuss the values of biodiversity.	7M
	b)	What are the various threats leading to loss of biodiversity?	7M
		UNIT-IV	
7.	a)	Outline the different causes of water pollution and suggest few measures to control it.	7M
	b)	Explain about the causes of soil pollution.	7M
		OR	
8.	a)	Identify the human activities contributing to large scale air pollution.	7M
	b)	What are the effects of noise pollution?	7M
		UNIT-V	
9.	a)	List out various causes for population explosion? Mention few measures to control	
		population explosion.	7M
	b)	Discuss the advantages of rain water harvesting.	7M
		OR	
10.	a)	Examine the importance of value based environmental education in protection of	
		environment.	7M
	b)	Discuss briefly the environment and its relation to human health.	7M
