Hall Ticket Number :	
Code: 7GC41	-17
II B.Tech. II Semester Supplementary Examinations December 20)22
Environmental Science	
(Common to CE & ME)	
Max. Marks: 70 Time:	3 Hours
Answer any five full questions by choosing one question from each unit $(5x)4 = 70$	O Marks)
UNIT-I	75.4
a) Define the term 'Environment'. What is Climate change?	7M
b) Knowledge about the environment is not an end, but rather a beginning. Explain.	7M
OR	
a) Name any five eminent environmentalists. Summarize their contribution.	7M
b) Explain the scope of Environmental Engineering.	7M
UNIT-II	
a) Environment damages caused by mining last long after the mine is closed. Discus	SS

1.

2.

3.

4.

5.

8.

b)

a)

b)

with an example.

water dispute.

OR

What are the major causes for conflicts over water? Discuss one inter-state river

UNIT-III

Differentiate between renewable and non-renewable energy resources.

What are the actions that could serve as solutions to the problem of deforestation?

With a neat sketch, explain how the element Carbon is recycled in nature?

Define Hotspot in Biodiversity. Enumerate the Hotspots identified in India. 7M a) What are food chains and food web? Explain significance with examples. 6. 7M Identify and explain the present day threats to the biodiversity in India. b) 7M **UNIT-IV** List the major air pollutants and explain their effects on human beings. 7. a) 7M How is soil productivity affected by soil pollution? Suggest control measures. b) 7M

UNIT-V

Define BOD. Differentiate between point and non-point sources of pollution.

a) Write a short note on Chernobyl nuclear disaster.

9. Describe the salient features of Forest Conservation Act. a) 7M What are the objectives and elements of Value education? b) 7M

10. a) List the major greenhouse gases. Explain effects of global warming. 7M Explain the environmental problems posed by population explosion. 7M

b)

7M

7M

7M

7M

7M

7M

7M

	Hall Ticket Number :			
	Code: 7G542	R-17		
	Il B.Tech. Il Semester Supplementary Examinations December 2 Fluid Mechanics and Hydraulic Machinery (Mechanical Engineering)	2022		
		e: 3 Hc 70 Mai		
	UNIT-I	Marks	СО	BL
1.	Calculate the specific weight, specific mass, specific volume and specific gravity of a liquid having a volume of 6 m^3 and weight of 44 KN. OR	14M	CO1	L3
2.	What are the different types of fluid flow? Explain.	14M	CO1	L1
	UNIT-II			
3.	State the assumptions made in the derivation of Bernoulli's equation and hence derive the Bernoulli's equation. OR	14M	CO2	L2
4.	A pipe of diameter 40 cm carries water at a velocity of 25 m/s. The pressures at the point A and B are given as 29.4 N/cm² and 22.56N/cm² respectively while the datum head at A and B are 28 m and 30 m. Find the loss of head between A and B.	14M	CO2	L3
5.	UNIT-III Derive the expressions for force and work done per second by the jet when it strikes a flat plate, inclined Plate, curved plate moving in the direction of the jet.		CO3	L2
6.	OR What are the radial vanes? What are the velocity triangles? What are the uses of their drawing for a typical case of a jet striking a moving plate?	14M	CO3	L2
7.	UNIT-IV Explain the different types of the Efficiencies of a turbine. OR	14M	CO4	L2
8.	With a neat sketch explain the working principle of Pelton wheel.	14M	CO4	L2
9.	UNIT-V A single acting reciprocating pump has a plunger of diameter 0.3m and stroke of length 0.4m. If the speed of the pump is 60 rpm and coefficient of discharge is 0.97, determine the percentage slip and actual discharge of the pump. OR	14M	CO5	L3
10.	Explain following i) Main characteristic curves ii) Operating characteristic curves iii) Muschel curves ***	14M	CO5	L2

	Hall Ticket Number :	
	R-17	
	II B.Tech. II Semester Supplementary Examinations December 2022	
	Kinematics of Machinery	
	(Mechanical Engineering)	
	Max. Marks: 70 Time: 3 Hours	
	Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks) **********	
	UNIT-I	
1.	Sketch and describe the working of two different types of quick return mechanisms. Give examples of their applications. Derive an expression for the ratio of times taken in forward and return stroke for one of these mechanisms	14M
	OR	
2.	Write notes on complete and incomplete constraints in lower and higher pairs, illustrating your answer with neat sketches.	14M
	UNIT-II	
3.	In the mechanism shown in Fig, the slider C is moving to the right with a velocity of 1 m/s and an acceleration of 2.5 $\mathrm{m/s^2}$. The dimensions of various links are AB=3m inclined at 45° with the vertical and BC = 1.5 m inclined at 45° with the horizontal. Determine: a. The magnitude of vertical and horizontal component of the acceleration of the point B, and b. the angular acceleration of the links AB and BC.	
	∄ A	
	3 m	
	45°	
	B	
	1.5 m	
	C	14M
	OR	
4.	In a four bar chain ABCD, AD is fixed and is 150 mm long. The crank AB is 40 mm long and rotates at 120 r.p.m. clockwise, while the link CD = 80 mm oscillates about D. BC and AD are of equal length. Find the angular velocity of link CD when angle BAD = 60°.	14M
	UNIT-III	
5.	a) Sketch a Paucellier mechanism. Show that it can be used to trace a straight line.	7M
	b) What is a Scott-Russel mechanism? What is its limitation? How it is modified? OR	7M
6.	Derive an expression for the velocity of the driven shaft in a Hook's coupling	14M
	UNIT-IV	ITIVI
7.	Two involute gears of 20° pressure angle are in mesh. The number of teeth on pinion is 20 and the gear ratio is 2. If the pitch expressed in module is 5 mm and the pitch line speed is 1.2 m/s, assuming addendum as standard and equal to one module, find: a. The angle turned through by pinion when one pair of teeth is in mesh; and b. The maximum velocity of sliding.	14M
	D. The maximum velocity of sliding. OR	17111
8.	A pair of gear has 16 teeth and 18 teeth, a module 12.5 mm an addendum 12.5 mm and a pressure angle 14.5°. Prove that gears have interference. Determine the minimum number of teeth and the velocity ratio to avoid interference.	14M
	UNIT-V	
9.	A cam with 30 mm minimum radius is rotating clock wise at 1200 rpm to give the following motion to a roller follower of 20 mm radius. i) Lift = 25 mm	
	 ii) Follower rise during 120° cam rotation with simple harmonic motion. iii) Follower to dwell for 60° cam rotation. iv) Follower to return during 90° cam rotation with uniform acceleration and deceleration. 	
	v) Follower to dwell for remaining period.	
	Construct the profile of the cam and determine the maximum velocity and acceleration during rise and return.	14M
	OR	

Explain with sketches the different types of cams and followers

10.

14M

	Hall Ticket N	lumber :											\neg	
	Code: 7GC42	2	,			·	·	·	·		R-	17		
	II B.Ted	ch. II Sen	nester S							ions Dece	mber 202	22		
				Prob		-								
		. 70	(Comm	on to	CE	, MI	E & (CSE)		T' · ·			
	Max. Marks Answer any t		estions h	ov chor	osina	one	aue	stior	n fron	n each unit	Time: $3000000000000000000000000000000000000$			
	7 (115 VV CI CITY)	1110 1011 90	C3110113 k	Jy Crio	_	****	-	,31101	1 1101	ii cacii oilii	(5)(14-70	Marks	1	
					UNIT-	_						Marks	СО	Bl
	If P(A) =1/4	1 D(R _ 1	/ 3 and				n fin	4 D(۸/ R) D (R / A)	P (Λ ດR′)			
	and P (A/B'		/ 5 and	ו (אטט)= 1/ 2	- 1110		uı (A, D), I (D/A),	(A D)	14M	1	L2
	ana : (7172	<i>)</i> •			OR								•	
	State and pro	ove Bave's	theoren	n	•							14M	1	L2
	otato aria pro	210 2 0,00			UNIT-	.11							•	
	Ten coins are	e throw sir	nultaneo				obal	oility	of ae	etting at leas	t (i) seven			
	heads (ii) six			,		- 1		. ,	- 3 -	J	()	14M	2	Ľ
					OR									
	If the probab	•						•						_
	chance that c	out of 2000	individu				o inc	dividu	ıals v	will get a bac	reaction.	14M	2	L۷
	.,		-0111		JNIT-					D: 00 F:	1.41			
	If we can ass		5% that t	the max	kımum	erro	or is	0.05	and	P is 0.2. Fir	nd the size	14M	3	L2
	of the sample	.			OR							14111	3	L2
	Find 95% cor	ofidoneo lir	nite for t	ho moo		nor	mali	hu die	etribu	tod populati	on from			
	which the foll							•			JII II OIII	14M	3	L2
		g			JNIT-		-,	-,-,-	, , .	-,				
1	A random san	nple of 10 b	ooys had				: 70	, 120	, 110	, 101, 88, 83	, 95, 98,			
	107, and 100.				_							14M	4	L4
					OR									
	A random sa	•						•		•	•			
	of 71.8 years		•	•						•				
	seem to indic level of signif		ie illeali	ille spa	ari tou	ay is	gre	alei	lliali	70 years?	JSE a 0.05	14M	4	L4
	iovo. oi oigim			l	JNIT-	V							•	_
	The measure	ements of t	he outpu				e ai	ven t	he fo	ollowing resu	lts.			
	Assuming that		•				_			•				
	10% significa	int level, To	est whet	her the	two p	opul	atio	ns ha	ave th	ne same var	iance			
	Unit-A	14.1	1	0.1	1	4.7		1	3.7	14.0				
	Unit-B	14.0	1	4.5	1	3.7		1	2.7	14.1		14M	4	L4
					OR									
	4 coins were	tossed 16	0 times a	and the	follow	/ing	resu	lts w	ere c	btained,				
			No, of	Heads	0	1	2	3	4					
			Frequ	uency	17	52	54	31	6					
	Under the as	•							e ex	pected freq	uencies of			
	0,1,2,3,4 hea	ids and tes	t the go	odness	of fit f	or :	=0.0	5				14M	4	L

Hall Ticket Number :							\neg
Code: 7G541	-					R-17	

II B.Tech. II Semester Supplementary Examinations December 2022

Applied Thermodynamics-I

(Mechanical Engineering)

		Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x1) ***********************************	Time: 3 4 = 70 N		
			Marks	СО	BL
		UNIT-I			
1.		With the help of P-V and T-S diagrams explain OTTO cycle and derive an expression for air standard efficiency. OR	14M	CO1	L2
2.	a)	Elaborate the following.			
		i) Exhaust blow down loss ii) Loss due to rubbing friction	6M	CO1	L2
	b)	Explain about Time loss factor and Heat loss factor with suitable diagrams. UNIT-II	8M	CO1	L2
3.	a)	Discuss with a neat sketch, the working principle of carburetor and explain			
	,	its Components.	7M	CO2	L2
	b)	What are different fuel injection systems for C.I engines? Explain any one? OR	7M	CO2	L1
4.	a)	Discuss about thermostat cooling system with a neat diagram.	6M	CO2	L2
	b)	Write short notes on			
		(i) Solid Injection System, (ii) Wet sump Lubrication System UNIT-III	8M	CO2	L2
5.		Describe with suitable sketches the combustion phenomenon in S.I			
		engines and explain the two phases of combustion.	14M	CO3	L2
		OR			
6.	a)	Write notes on (i) fuel rating and (ii) anti-know additives.	7M	CO3	L2
	b)	List out the requirements of good combustion chamber in SI engines.	7M	CO3	L2
		UNIT-IV			
7.		A rope brake was used to measure the brake power of a single cylinder 4-stroke petrol engine. It was found that the torque due to brake load is 175 N-m and the engine runs at 500 rpm. Determine the brake power			
		developed by the engine?	14M	CO4	L3
		OR			
8.		List out various methods for measurement of friction power and explain Morse method of determination of friction power. UNIT-V	14M	CO4	L1
0					
9.		Derive an expression for the isothermal efficiencies of a reciprocating compressor in terms of the pressure ratio.	14M	CO5	L6
10	٥,	OR	71.4	005	1.4
10.		List the various types of rotary compressors?	7M	CO5	L1
	b)	Discuss with a neat sketch, the working of a roots blower. ***	7M	CO5	L2

Hall Ticket Number :

R-17

Code: 7G246

II B.Tech. II Semester Supplementary Examinations December 2022

Electrical and Electronics Engineering

(Mechanical Engineering)

Max. Marks: 70

Time: 3 Hours

Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

1. a) Find the total power dissipated in the circuit shown in the figure. (All resistances are in ohms).

7M

 b) In the network shown in figure find all branch currents and voltage drops across all resistors

7M

OR

2. a) Find the current I supplied by the battery of the through delta / star transformation

10M

b) Define the terms active elements, bilateral elements, linear elements and passive elements with examples.

4M

UNIT-II

3. Explain swinburnes test of DC motor with necessary equation and circuit diagrams and also the advantages and disadvantages of swinburnes test.

14M

OR

4. a) Explain Faradays law of Electromagnetic Induction

5M

b) Write shorts notes on the types of dc Generators.

9M

Code: 7G246

UNIT-III Deduce EMF equation of a transformer 5. 10M Calculate the EMF per turn if the flux is 0.01Wb at a frequency of 50 Hz. b) 4M Explain how to find the regulation of alternator by using synchronous impedance 6. a) method. 8M b) Explain the principle of operation of three phase induction motor. 6M **UNIT-IV** Derive the expressions for voltage gain, current gain, output impedance and input 7. impedance of a CE amplifier. M8 What is feedback amplifier? Explain the operation of feedback amplifier b) 6M OR 8. Explain the operation of PNP and NPN transistors 7M Write the necessary conditions for oscillators. b) 7M UNIT-V Explain the theory of Dielectric heating and state its applications 9. a) 7M Explain the theory of Induction heating and state its applications b) 7M OR 10. Explain construction of Cathode Ray Oscilloscope with necessary figures a) 7M Draw the block diagram of a CRO and explain the functions of its various components? 7M ***