\square

R-17

Code: 7G343

|| B.Tech. I| Semester Supplementary Examinations March 2021

Analog Communication

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Derive the equation and power relation of single tone modulation of $A M$ system?
b) Consider the message signal $m(t)$ containing the frequency components 100, 200 and 400 Hz . This message signal is applied to an SSB Modulator together with a carrier at 100 kHz with only USB retained. The coherent detector employed at the receiver uses a local oscillator that gives a sine-wave of frequency 100.02 kHz . Determine the frequency components of the detector output.

OR

2. a) Draw the circuit diagram of balanced ring modulator and explain its operation indicating all the waveforms and spectrums.
b) Derive an expression for efficiency (η) of a single tone AM signal and show that $\eta_{\max }$ is 33.3% for $\mu=1$.

UNIT-II

3. a) Explain about the spectral analysis of sinusoidal FM wave?
b) What is PLL? Explain demodulation of FM using first order PLL?

OR

4. a) With a neat circuit diagram explain the direct method of FM generation?
b) An Armstrong modulator is required in order to transmit an audio signal of bandwidth 100 Hz to 15 kHz . The narrowband phase modulator used for this purpose utilized crystal controlled oscillator to provide a carrier frequency of $f_{c 1}=0.1 \mathrm{MHz}$. The output of the narrowband phase modulator multiplied by a multiplier with multiplication constant n_{1} and passed to mixer with local oscillator frequency of $f_{c 2}=10.95 \mathrm{MHz}$. The desired FM wave at the transmitter output has a carrier frequency of 100 MHz , and frequency deviation $\mathrm{f}=75 \mathrm{kHz}$, which is obtained by multiplying the mixer output frequency with n_{2} using another multiplier. Find n_{1} and n_{2}. Assume that NBFM produce a frequency deviation of 20 Hz for the lowest baseband signal.

UNIT-III

5. a) Define figure of merit and derive an expression for figure of merit of coherent reception of SSB
b) What is the purpose of pre-emphasis and de-emphasis filtering? Explain the filtering process with suitable sketches.

OR

6. a) Derive an expression for figure of merit of an FM system?
b) The carrier reaching an envelope detector in an AM receiver has an RMS value equal to 1 volt in the absence of modulation. The noise at the input of the envelope detector has a PSD equal to $10^{-3} \mathrm{Watts} / \mathrm{Hz}$. If the carrier is modulated to a depth of 100% and message bandwidth, $\mathrm{W}=3.2 \mathrm{KHz}$, Find output signal to noise ratio.

UNIT-IV

7. a) With the aid of the block diagram explain briefly the functions of each block in highlevel AM transmitter?
b) Calculate the image rejection ratio of a receiver having an IF of 450 KHz , If the Q's of the coils are 65, at an incoming frequency of 20 M Hz .

OR

8. a) Draw the reactance modulated FM transmitter and explain its operation?
b) What are the carrier frequency requirements in a radio transmitter, Explain?

UNIT-V

9. a) Explain the principle of PAM generation with a help of block diagram. Derive the mathematical expressions?

7M 6 I\& II
b) With a neat diagram, briefly explain the concept of Time Division Multiplexing?

7M 2 I\& II

OR

10. a) Explain the generation of PWM, with suitable circuit and waveforms. Describe the demodulation of PWM.
b) Determine the transmission bandwidth of a PAM system for transmission of voice signals of maximum frequency is 3 KHz . It is given that the sampling frequency is 8 KHz and the pulse duration is $0.1 \mathrm{~T}_{\mathrm{s}}$. Whereas T_{s} is sampling Period.

7M 6 I\& II

7M 6 III

Code: 7GC43

II B.Tech. II Semester Supplementary Examinations March 2021

Complex Variables and Special Functions

(Common to EEE \& ECE)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

4. a) Show that the function ich that ${ }^{\circ}(z)=e^{3}$ not analytic at the origin, although Cauchy- Riemann equatións are ${ }^{f}(z)=\sqrt{|x y|}$ is

UNIT-III

5. a) Evaluate $\int_{C}=z d z w h o r e c$ is the

7M 2 II

OR

 with the vertices at $1 \pm i$ and $-1 \pm i$.

7M 2
III
 $1<|z|<z$.

UNIT-IV

7. a) Show that $\int_{-\infty}^{-\infty} \frac{\cos a x}{x^{2}+1} d x=\pi e^{-a, a \geq 1 T-0 .}$
7M 3 II
b) Show but

7M 3 III

8. Solve $\int_{-\infty}^{\infty} \frac{d x}{\left(x^{2}+a^{2}\right)\left(\overline{x^{2}} \overline{2}+b^{2}\right)} d x, a \geq 0^{\prime} b R=1, a \neq b$.

14M 3 III

UNIT-V

9. a) Illustrate the imge of the infinite strip $0<{ }_{y<\frac{1}{2}}$ under the transformation $w=\frac{1}{z}$.

7M 2 II
b) Find the bilinear transfor mati on that maps the point $(0,1, \infty)$ in the z-plane onto the point $(-1,-2,-i)$ in the w-plane.

OR

 transformation $w=\operatorname{Sin} z$.
 $w_{1}=-1, w_{2}=-i, w_{3}=1$ respectively.

Code: 7G344

II B.Tech. II Semester Supplementary Examinations March 2021

Field Theory and Transmission Lines

(Electronics and Communication Engineering)
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Charges of 20 nC and -20 nC are located at $(3,0,0)$ and $(-3,0,0)$ respectively. Calculate the magnitude of Electric field intensity at origin.
b) Given the electric flux density, $D=0.3 r^{2} a^{r} n C / m^{2}$ in free space. Find Electric field intensity E at point $P\left(r=2, \theta=25^{\circ}, \phi=90^{\circ}\right)$

OR

2. a) i. Apply Gauss law to calculate Electric field due to point charge Q.
ii. Assume zero potential at infinity, Determine the potential at a distance ' r ' from the point charge Q .
b) Two point charges $-4 \mu \mathrm{C}$ and $5 \mu \mathrm{C}$ are located at ($2,-1,3$) and ($0,4,-2$), respectively. Find the potential at $(1,0,1)$ assuming zero potential at infinity.

UNIT-II

3. a) Consider a conductor of uniform cross section S and length I connected to a source of electromotive force. Assume electric field E exists inside the conductor to sustain flow of current. Determine the resistance of conductor.
b) Define boundary conditions? Determine the boundary conditions at dielectricdielectric interface.

OR

4. a) Define capacitance of a capacitor. Determine the capacitance of parallel plate capacitor.
b) State Continuity of current equation. Derive Continuity equation. Express the Continuity equation for steady currents and what do you infer from this expression.

UNIT-III

5. a) State Biot-Savarts law. How to determine the direction of magnetic field intensity.

OR

6. a) State Amperes Law. Apply Amperes circuit law to determine magnetic field for Infinite sheet of current.

[^0]UNIT-IV
7. Compute the following param ${ }_{1 \text { eters for }}$ mist soil $\epsilon_{\mathrm{r}}=16$, and $\sigma=5 \mathrm{mS} / \mathrm{m}$ atfrequency of 100 MHz .
i. Propagation constant $\hat{\gamma}$
ii. Attenuation constant α
iii. Phase constant β
iv. Intrinsic impedance $\hat{\eta}$
v. Skin depth δ_{c}
vi. Tangent loss tan δ 14M
OR
8. a) Explain skin depth and derive expression for depth of penetration for good conductor. 7M
b) Find skin depth for a copper conductor at frequency 1 MHz . The conductivity of copper is $5.8^{*} 10^{7} \mathrm{~S} / \mathrm{m}$ and $\mu_{\mathrm{r}}=1$. 7M
UNIT-V
9. a) Explain the meaning of the terms characteristic impedance and propagation constant of a uniform transmission line and obtain the expressions for them in terms of parameters of line. 7M
b) Calculate the reflection coefficient and VSWR for a 50 lines, terminated with
i) matched load. ii) short circuit. 7M
OR
10. a) Derive the expression for the input impedance of a transmission line of length L 7M
b) Explain the applications of smith chart. 7M

\square
Code: 7G342
|| B.Tech. || Semester Supplementary Examinations March 2021

Pulse and Digital Circuits

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)
UNIT-I

1. a) Prove that for any periodic input wave form the average level of the steady state output signal from RC high pass circuit is always zero.
b) Derive the expression for percentage tilt (P) of a square wave output of RC high pass circuit.

OR

2. a) Analyze the high pass RC circuit for the following inputs, with the help of wave forms
i) Exponential input ii) Ramp input
b) Explain how a low pass RC network acts as attenuator and ringing circuit

UNIT-II

3. a) Explain the working of an Emitter coupled clipper with circuit diagram.

8M
b) Write a short note on Diode switching times

OR
4. a) Draw the diode comparator circuit and explain the operation of it when ramp input signal is applied.
b) Explain how a transistor can be used as a switch

UNIT-III

5. a) Explain the operation of Fixed-Bias Bistable multivibrator with circuit diagram and waveforms.

7M CO2
b) Design collector coupled monostable multivibrator for the following specifications. VCC $=10 \mathrm{~V}, \mathrm{VBB}=-5 \mathrm{~V}, \mathrm{IC}(\mathrm{sat})=10 \mathrm{~mA}, \mathrm{hFE}=20, \mathrm{VBE}$ (off) $=-0.5 \mathrm{~V}$, Output pulse width $\mathrm{tp}=200 \mathrm{~S}$. (assume Si transistors)

OR

6. a) Explain how an Schmitt trigger circuit acts as a comparator

b) Design the Astable Multivibrator to generate 1 KHz square wave. The supply
voltage VCC=10V, IC(sat)=10mA hfe=50 and assume Si transistors.

UNIT-IV

7. a) Explain briefly the different methods of generating time-base waveform
b) With the circuit diagram explain current time base generator. $8 \mathrm{M} \quad \mathrm{CO3}$

OR
8. a) Explain about the linearly correction through adjusting of driving waveform.
b) Explain how UJT is used for sweep circuit?

UNIT-V

9. a) Explain the basic operation of sampling gate.

8M CO4
b) Explain the operation of unidirectional diode gate.

6M
CO4
OR
10. a) Draw and explain the circuit diagram of integrated positive DTL NAND gate.

7M CO4
b) Compare the RTL and DTL logic families in terms of Fan out, propagation delay, power dissipated per gate and noise immunity.

Code: 7G341

II B.Tech. II Semester Supplementary Examinations March 2021

Random Variables and Random Processes

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Explain the concept of Total probability and Baye's Theorem
b) An experiment is throwing a coin trice, the random variable represents the number

L2 of heads comes out. Find and sketch the distribution and density functions.

OR
2. a) A lot of 100 semiconductor chips contains 20 that are defective. Two chips are O1 selected at random, without replacement, from the lot.
i. What is the probability that the second one selected is defective given that the first one was defective.
ii. What is the probability that both are defective?
b) Explain the Gaussian random variable.
6M CO1 L2

UNIT-II

3. a) Show that $\sigma_{X}{ }^{2}=\frac{(b-a)^{2}}{12}$, where X is a random variable uniformly distributed over (a, b).
b) State and Prove the Chebyshev's inequality.
6M CO2 L5

OR

4. a) What is the expected value of an exponential random variable X ?
8M CO2 L1
b) Determine the mean and variance of new random variable $Y=2 X+3$, where X is Gaussian random variable.

UNIT-III

5. a) Define the joint density function and list out its properties.
b) State and prove Central Limit Theorem.
8M CO2 L1

OR
6. a) Random variables X and Y have respective density functions

8M CO2 L3 $f_{X}(x)=\frac{1}{a}[u(x)-u(x-a)] \& f_{Y}(y)=b u(y) e^{-b y}$ where $a>0, b>0$. Solve and sketch the density function of $W=X+Y$ if X and Y are statistically independent.
b) Explain about the jointly Gaussian random variables.
6M CO2 L2

UNIT-IV

7. a) Explain the concept of Random process.
8 M CO3 L2
b) Explain about stationary random process.
6M CO3 L2

OR
8. a) Explain Time Averages and Ergodocity.
b) State and prove the properties of Auto correlation function.
8M CO3 L2

UNIT-V

9. a) Develop the relationship between the Auto correlation function and Power

8M CO4 L3 spectral density.
b) Determinte" thity. iss correlation function corresponding to the cross power 6M co4 L5 spectrum ${ }^{3}$ e cro $=-\frac{8}{\left({ }^{\alpha+j}(\omega) \overline{3}\right.}$

OR

8M CO4 L3

[^0]: b) Relate Scalar and Vector magnetic potentials to Magnetic field Intensity.

