Hal	Il Ticket Number :												[
bde	e: 7G343		1									-	R-17			
		ll Sen	nes	ter	Sup	pler	nen	tary	' Exc	mir	natic	ns N	1arch 202 ⁻			
				An	alo	g C	om	mυ	nicc	itioi	า					
		(Elec	tror	nics	and	Со	mmı	Jnic	atior	n Eng	gine	ering	-	0.11-		
	Max. Marks: 70 Answer all five	units k	ov c	hoo	sina	one	aue	stion	from	ead	ch ur	nit (5		3 Hou arks)	IS	
			0,0	110 0	sin ig		*****		non							
				г										Marks	СО	BI
) Derive the equation		1			NIT-		o 100		ماريام		£ ^ N A	avetera 2	714	4	
a) b)	· ·		•				•						•	7M	1	
b)) Consider the mes 400 Hz. This mes	-	-	•			-		•	-	•					
	100 kHz with only															
	local oscillator that components of the	•				of free	quenc	cy 10	0.02k	Hz. L	Deterr	nine t	he frequency	7M	2	
				uipu		0	R								-	
a)	,	-					-	modu	ulator	and	exp	lain i	ts operation			
	indicating all the v				•									7M	1	I
b)	, i		or eff	icien	су () of a	a sing	gle to	ne A	M sig	inal a	nd sh	now that max		0	
	is 33.3% for µ = 1	•		٢		NIT-								7M	2	
a)) Explain about the	specti	ral a	nalv				al FM	l wav	e?				7M	3	18
b)	· ·	•		•							L?			7M	1	I
a)						-	R								_	_
a)		U		•						Ũ				7M	3	I
b)) An Armstrong mo 100 Hz to 15 kHz.			•								•				
	controlled oscillato				•						• •		•			
	narrowband phase				•	•		•								
	passed to mixer w at the transmitter					•	•									
	f =75 kHz, which	•											•			
	another multiplier.					ume	that N	IBFN	l proc	luce	a freq	uency	/ deviation of		_	
	20 Hz for the lowe	st base	eban	d sig										7M	2	
a)) Define figure of	merit	and	der		NIT-I an ex		sion	for f	iaure	of	merit	of coherent			
α,	reception of SSB		ana					0.011		iguie		nont		6M	4	
b)) What is the purpo	se of p	pre-e	empł	nasis	and	de-e	mpha	asis f	ilterir	ng? E	xplair	n the filtering			
	process with suita	able sk	etch	ies.										8M	4	I
		nion fa	r fia:		fma		R	Mar	otom	2				014	л	
a) b)			•					•			20.00	DMC		8M	4	
b)	to 1volt in the abs	•		•									-			
	has a PSD equal	to 10 ⁻³	³ Wat	ts/H	z. If t	he ca	arrier	is m	odula	ited t	o a d		•			
	message bandwid	dth, W	=3.2	KHz	z, Fin	d ou	tput s	signa	l to n	oise	ratio.			6M	4	

Code: 7G343

		Coue.	-13		
		UNIT–IV			
7.	a)	With the aid of the block diagram explain briefly the functions of each block in high-	1		
		level AM transmitter?	8M	5	&
	b)	Calculate the image rejection ratio of a receiver having an IF of 450 KHz, If the Q's of			
		the coils are 65, at an incoming frequency of 20 M Hz.	6M	5	III
		OR			
8.	a)	Draw the reactance modulated FM transmitter and explain its operation?	7M	5	&
	b)	What are the carrier frequency requirements in a radio transmitter, Explain?	7M	5	I
		UNIT-V			
9.	a)	Explain the principle of PAM generation with a help of block diagram. Derive the			
		mathematical expressions?	7M	6	&
	b)	With a neat diagram, briefly explain the concept of Time Division Multiplexing?	7M	2	&
		OR			
10.	a)	Explain the generation of PWM, with suitable circuit and waveforms. Describe the			
		demodulation of PWM.	7M	6	&
	b)	Determine the transmission bandwidth of a PAM system for transmission of voice signals			
		of maximum frequency is 3 KHz. It is given that the sampling frequency is 8 KHz and the		_	
		pulse duration is $0.1T_s$. Whereas T_s is sampling Period.	7M	6	111

	ŀ	Hall Ticket Number :			_
			R-17	,	
	Co	Dee: 7GC43 Il B.Tech. Il Semester Supplementary Examinations March 20			_
		Complex Variables and Special Functions			
		(Common to EEE & ECE)		_	
	Μ	iax. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 ********	ne: 3 H Marks		•
			Marks	со	Blooms
		UNIT–I			Level
1.	a)	Show that $\int_{0}^{1} \frac{x^{n_{1}} - (1-x)^{n_{-1}}}{(x+a)n^{i_{+}n}} \equiv \frac{\int_{0}^{-(m,n)}}{an(1+a)n}$	714	0	
	b)	Find all the roots of $\frac{1-m+n}{m+n} = \frac{1}{m}$	7M 7M	2 2	
	,		7 101	2	I
2.	a)	Show that $\int_{0}^{c} x^{n} e^{-a^{2}x^{2}} \equiv \frac{1}{2an+1} \Gamma\left(\frac{n+1R}{2}\right), n > -1$	7M	2	II
	b)	Find all values of z which satisfy $\sum_{r=1}^{r} \frac{c^{2}}{2} - 2$.	7M	2	
3.	a)	Show that $r = xy + ty$ is everywhere continuous but is not analytic.	7M	1	I
	b)	Find all the values of k such that r_{ywhere} continuous but is not analytic. $r_{(x)} = ex(\cos ky + i Sinky)$ is analytic.	7M	1	I
4.	a)	Show that the function $e^{ich that e^{ich}} e^{ich}$ not analytic at the origin, although			
	,	Cauchy- Riemann equations are Satisfied at the point.	7M	1	I
	b)	Find k such that $\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$	7M	1	I
		UNIT-III			
5.	a)	Evaluate $\int_{C}^{a^{2} + 2a^{2} + 3a^{2} + 3a^{2}} \int_{C}^{a^{2} + 2a^{2} + 3a^{2} + 3a^{2}} \int_{C}^{a^{2} + 3a^{2} + 3a^{2} + 3a^{2}} \int_{C}^{a^{2} + 3a^{2} + 3a^{2} + 3a^{2}} \int_{C}^{a^{2} + 3a^{2} + 3a$	7M	2	V
	b)	Express $\int_{C} \frac{1}{z^2 d_1} = \frac{1}{z}$ as the Taylor series at the point $\frac{1}{z} = \frac{1}{1}$.	7M	2	П
		OR		-	
6.	a)	Verify Cauchy's theorem for the function the point $f(z) = \frac{1}{z^2 + iz - 4}$ if <i>C</i> is the square with the vertices at $1 \pm i$ and $-1 \pm i$.	7M	2	Ш
	b)	Expr _{ess} $f_{(z)}^{\text{errices}} = (\frac{1}{1-z)(z-2)}$ as the Laurent's series expansion in an annulus region			
		1 < z < 2.	7M	2	II
		UNIT-IV			
7.	a)	Show that $\int_{-\infty}^{\infty} \frac{\cos ax}{x^2+1} dx = \pi e^{-a} a \ge 1$.	7M	3	П
	b)	Show built $J_{-\epsilon} = \frac{2}{12} \frac{2}{2} \frac{1}{2} e^{-a}$ by the number of zeros $0 \Rightarrow$ polynomial Use $R'_{1} = 2 \frac{2}{2} \frac{1}{2} \frac{1}{2}$			
		$f(z) = 2z_4 - 2z_3 + 2z_2 + 2z + 1$, that lie inside the circle $ z = 1$.	7M	3	
8.		Solve $\int_{-\infty}^{\infty} \frac{dx}{(x^2+d^2)(x^2+b^2)} dx$, $a > 0$, $b > 1$, $a \neq b$.			
0.			14M	3	III
9.	a)	UNIT-V			
0.	u)	Illustrate the sign of the infinite strip $0 < \frac{1}{\nu < \frac{1}{2}}$ under the			
		transformation $w = \overline{z}$.	7M	2	II
	b)	Find the bilinear transfor on that maps the point $(0,1,\infty)$ in the <i>z</i> -plane onto the point $(-1, -2, -i)$ in the w-plane.	714	2	
		OR	7M	Ζ	I
10.	a)	Illustrate the in nage of the rectar gle R $R: -\pi < x < \pi, \frac{1}{2} < y < 1$ under the			
		transformation $w = \sin z$.	7M	2	П
	b)	trind the linear = 5 nsformation that maps $[0, \frac{3}{2}, 1, 1, \infty] \infty$ onto			
		$w_1 = -1, w_2 = -i, w_3 = 1$ respectively.	7M	2	I

	Hal	I Ticket Number :	
۔ د		e: 7G344	R-17
C	Jud	II B.Tech. II Semester Supplementary Examinations March 2	021
		Field Theory and Transmission Lines	
		(Electronics and Communication Engineering)	
i	-	K. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 *********	ne: 3 Hours Marks)
			Marks
1.	a)	UNIT–I Charges of 20nC and -20nC are located at (3,0,0) and (-3,0,0) respectively.	
	u)	Calculate the magnitude of Electric field intensity at origin.	7M
	b)	Given the electric flux density, $D=0.3r^2a^r$ nC/m ² in free space. Find Electric	
		field intensity E at point P(r=2, θ =25°, ϕ =90°)	7M
2.	a)	OR i. Apply Gauss law to calculate Electric field due to point charge Q.	
۷.	4)	ii. Assume zero potential at infinity, Determine the potential at a distance 'r'	
		from the point charge Q.	8M
	b)	Two point charges -4 μ C and 5 μ C are located at (2,-1, 3) and (0, 4, -2), respectively. Find the potential at (1, 0, 1) assuming zero potential at infinity.	6M
		UNIT–II	
3.	a)	Consider a conductor of uniform cross section S and length I connected to a	
		source of electromotive force. Assume electric field E exists inside the	CN4
	b)	conductor to sustain flow of current. Determine the resistance of conductor. Define boundary conditions? Determine the boundary conditions at dielectric-	6M
	0)	dielectric interface.	8M
		OR	
4.	a)	Define capacitance of a capacitor. Determine the capacitance of parallel plate	
		capacitor.	7M
	b)	State Continuity of current equation. Derive Continuity equation. Express the Continuity equation for steady currents and what do you infer from this	
		expression.	7M
F		UNIT-III	
5.	a)	State Biot-Savarts law. How to determine the direction of magnetic field intensity.	6M
	b)	Determine Magnetic field due to straight current carrying filament of finite	
		length.	8M
e	c)	OR State Ampered Low Apply Ampered sireuit low to determine magnetic field for	
6.	a)	State Amperes Law. Apply Amperes circuit law to determine magnetic field for Infinite sheet of current.	8M
	b)	Relate Scalar and Vector magnetic potentials to Magnetic field Intensity.	6M

		UNIT–IV	coue.
7.		Compute the following parameters for moist soil $\epsilon_r = 16$, and $= 5$ mS/m at	
		frequency of 100MHz.	
		i. Propagation constant γ	
		ii. Attenuation constant α	
		iii. Phase constant	
		iv. Intrinsic impedance η	
		v. Skin depth _c	
		vi. Tangent loss tan	14M
		OR	
8.	a)	Explain skin depth and derive expression for depth of penetration for good	
		conductor.	7M
	b)	Find skin depth for a copper conductor at frequency 1MHz. The conductivity	
		of copper is $5.8*10^7$ S/m and μ_r =1.	7M
		UNIT–V	
9.	a)	Explain the meaning of the terms characteristic impedance and propagation	
		constant of a uniform transmission line and obtain the expressions for them in	
		terms of parameters of line.	7M
	b)	Calculate the reflection coefficient and VSWR for a 50 lines, terminated	
		with	
		i) matched load. ii) short circuit.	7M
		OR	
10.	a)	Derive the expression for the input impedance of a transmission line of length L	7M
	b)	Explain the applications of smith chart.	7M
	•		

Н	all Ticket Number :		
C	ode: 7GA41	17	
	II B.Tech. II Semester Supplementary Examinations March 20	21	
	Managerial Economics and Financial Analysis		
	(Electronics and Communication Engineering)		
		e: 3 Hours	
	Answer all five units by choosing one question from each unit ($5 \times 14 = 70$	Marks)	
	******	Marks CC	、В
	UNIT–I	Marks CC	, ,
	Define managerial economics. Also explain its important characteristics.	14M	
	OR		
	What do you mean by price elasticity of demand? What are its types? Discuss.	14M	
	UNIT-II		
	What is meant by law of diminishing returns? What are its assumptions? Explain.	14M	
	OR		
•	Write a short note on cost output relationship in long run.	14M	
	UNIT–III		
•	What are the important features underlying perfect markets? Discuss.	14M	
	OR	14M	
•	What do you understand by a joint stock company? What are its merits? Explain.	1411	
	What are the various sources of long term finance? Explain each of them in detail.	14M	
•	OR		
	A project involves an initial outlay of Rs.1, 29,600. Its working life is expected to be	;	
	3years. The cash inflows are likely to be as follows: Year 1is Rs.64, 000, Year 2is	;	
	Rs.56, 000 and Year 3is Rs.24, 000. Compute the internal rate of return.	14M	
	UNIT–V		
•	What do you mean by final accounts? Explain in detail.	14M	
	OR		

10. You are given the trading and profit & loss account of **a** company for the year ended 31st March201**7**.

Tradi	ng and Prof	it & Loss Account	
Dr			Cr
Particulars	Rs.	Particulars	Rs.
To Opening Stock	5,00,000	By Sales	20,00,000
To Purchases To Wages To Factory Overheads To Gross Profit(c/d)	11,00,00 0 3,00,000 2,00,000 5,00,000	By Closing Stock	6,00,000
To Administrative Expenses	26,00,00 0	By Gross Profit(b/d) By Dividend on	26,00,000
To Selling &Distribution Expenses To Interest on debentures To Depreciation To loss on sale of motor car	75,000 50,000 20,000 60,000 5,000 3,20,000	Investment By Profit on Sale of Furniture	5,00,000 10,000 20,000
To Net Profit	5,30,000		5,30,000

14M

- Calculate a) Gross profit ratio
 - b) Net Profit ratio
 - c) Operating ratio
 - d) Operating profit ratio

	Co	ode: 7G342	R-1	7	
	CU	II B.Tech. II Semester Supplementary Examinations March 20)21		
		Pulse and Digital Circuits			
		(Electronics and Communication Engineering)			
	Μ		ne: 3 I		
		Answer all five units by choosing one question from each unit ($5 \times 14 = 70$	Marks	5)	
		******	Morko	со	Blo
		UNIT-I	Marks	CO	Le
	a)	Prove that for any periodic input wave form the average level of the steady state			
	ω,	output signal from RC high pass circuit is always zero.	7M	CO1	
	b)	Derive the expression for percentage tilt(P) of a square wave output of RC high			
	,	pass circuit.	7M	CO1	
		OR			
•	a)	Analyze the high pass RC circuit for the following inputs, with the help of wave forms			
		i) Exponential input ii) Ramp input	6M	CO1	
	b)	Explain how a low pass RC network acts as attenuator and ringing circuit	8M	CO1	
	-)	UNIT-II	014		
•	a)	Explain the working of an Emitter coupled clipper with circuit diagram.	8M	CO1	
	b)	Write a short note on Diode switching times	6M	CO1	
	a)	OR Draw the diode comparator circuit and explain the operation of it when ramp			
•	u)	input signal is applied.	7M	CO1	
	b)	Explain how a transistor can be used as a switch	7M	CO1	
	,	UNIT–III			
	a)	Explain the operation of Fixed-Bias Bistable multivibrator with circuit diagram			
		and waveforms.	7M	CO2	
	b)	Design collector coupled monostable multivibrator for the following			
		specifications. VCC=10V, VBB= -5V, IC(sat)= 10mA, hFE=20 ,VBE(off)= -0.5V,			
		Output pulse width tp= 200μ S. (assume Si transistors)	7M	CO2	
	a)	OR Explain how an Schmitt trigger circuit acts as a comparator	7M	CO2	
•	b)	Design the Astable Multivibrator to generate 1 KHz square wave. The supply	7101	002	
	0)	voltage VCC=10V, IC(sat)=10mA hfe=50 and assume Si transistors.	7M	CO2	
	a)	Explain briefly the different methods of generating time-base waveform	6M	CO3	
	b)	With the circuit diagram explain current time base generator.	8M	CO3	
		OR			
•	a)	Explain about the linearly correction through adjusting of driving waveform.	7M	CO3	
	b)	Explain how UJT is used for sweep circuit?	7M	CO3	
		UNIT–V			
•	a)	Explain the basic operation of sampling gate.	8M	CO4	
	b)	Explain the operation of unidirectional diode gate.	6M	CO4	
	. `				
•	a)	Draw and explain the circuit diagram of integrated positive DTL NAND gate.	7M	CO4	
	b)	Compare the RTL and DTL logic families in terms of Fan out, propagation	714	00 f	
		delay, power dissipated per gate and noise immunity.	7M	CO4	

	Н	all Ticket Number :]				
		de: 7G341												R-17		
		II B.Tech. II Se Ran e	emeste dom \ ectronic	/aria	bles	s an	d Ro	and	om	Pro	ces	ses		21		
	M	ax. Marks: 70 Answer all five units			g one		stion			-				ne: 3 Ho Marks)	ours	
							7							Marks	со	Bloom Leve
1.	a)	Explain the concept of	of Total I	orobal	UNIT bility a		ave's	: The	orem	1				8M	CO1	L2
	b)	An experiment is thro of heads comes out.	wing a c	oin tri	ce, th ch the	e ran e distr	dom	varia	ble re	epres				6M	CO1	L1
2.	a)	A lot of 100 semicon selected at random, v i. What is the proba	without r	eplace	conta ement	t, fror	n the	lot.							CO1	L1
	b)	first one was defe ii. What is the proba Explain the Gaussian	ective. ability that	at both	n are o					erecu	ve gi	ven	inai ine	6M	CO1	L2
3.	a)	Show that $T_{X}^{2} = \frac{(b)}{(b)}$	$\frac{(-a)^2}{12}$,	where	UNIT X is		ndon	ו var	iable	unife	ormly	/ dis [.]	tributed	I	CO2	L2
		over (a,b) .	12											8M		
	b)	State and Prove the (Chebysł	nev's i	-	ality. R								6M	CO2	L5
1.	a)	What is the expected	value o	f an e	-		rand	om v	ariab	le X?	•			8M	CO2	L1
	b)	Determine the mean Gaussian random va					dom	varia	ble Y	′=2X-	+3, w	/here	e X is	6M	CO2	L5
5.	a)	Define the joint densi	ty functi		UNIT d list o		s prop	pertie	es.					8M	CO2	L1
	b)	State and prove Cent	tral Limi	Theo	orem.									6M	CO2	L5
5.	a)	Random variables X	and V h	avo ro		R ivo d	oncit	, fun	ction	-				8M	CO2	L3
<i>.</i>	aj	$f_x(x) = \frac{1}{a} [u(x) - u(x)]$			-						>0.	Solv	e and	OW		LJ
		sketch the density fur														
	b)	Explain about the joir	ntly Gau		rando UNIT:		riable	es.						6M	CO2	L2
′ .	a)	Explain the concept of		-										8M	CO3	L2
	b)	Explain about station	ary ranc	om pi		3. D R								6M	CO3	L2
3.	a)	Explain Time Average	es and E	Ergodo										8M	CO3	L2
	b)	State and prove the p	propertie	s of A	uto co		tion	funct	ion.					6M	CO3	L5
).	a)	Develop the relations spectral density.	hip betv	veen t	he Au	ito co	rrela	tion f	uncti	on ar	nd Po	ower		8M	CO4	L3
	b)	Determine thity. ss spectrum _{SXY} (ω) =	s correl $\frac{8}{(\alpha+j\omega)^3}$		funct	ion c	corres	spon	ding	to ti	ne c	ross	power	6M	CO4	L5
					0	R										
).	a)	Develop that $\zeta = \frac{\zeta}{S_{yy} \zeta_{\omega y}}$	$\overline{\alpha} = S_{xx}$	a) F	ເພງິ	R								8M	CO4	L3
	b)	Determine the transfe						C Ne	etwor	k				6M	CO4	L5