II B.Tech. II Semester Supplementary Examinations April 2023

Random Variables and Random Processes

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) A dice is thrown 6 times. Find the probability that a face 3 will occur at least two times.
b) Discuss the relative frequency approach and axiomatic approach of probability
2. a) State and prove Bayes Theorem.
b) In a box there are 100 resistors whose resistances and tolerances are as shown in the table below. Let A be the event of drawing a 47 resistor, B be the event of drawing a resistor with 5% tolerance, and C be the event of drawing a 100 resistor. Find $P(A / B), P(A / C)$ and $P(B / C)$.

UNIT-II

3. a) The characteristic function for a Gaussian random variable X, having a mean value of 0 , is $\Phi X(\omega)=\operatorname{EXP}\left(-\right.$ sigma $\left.{ }^{2} / w^{2}\right)$ Find all the moments of X using $\Phi X(w)$
b) Explain about characteristic function in detail

OR
4. a) Explain about Moments about the origin and Central Moments with necessary equations
b) Derive expressions for mean and variance for uniform random variable? 7M

UNIT-III

5. a) Justify the statement "The density function of the sum of two statistically independent random variables is the convolution of their individual density functions"
b) Prove the following statement: $\operatorname{Var}(a x+b y)=a^{2} \operatorname{var}(x)+b^{2} \operatorname{var}(y)+2 a b \operatorname{cov}(x, y) \quad 6 M$

OR
6. a) Explain covariance of two random variables. 6M
b) Explain the joint conditional density function with relevant expressions 8M

UNIT-IV

7. a) $X(t)=2 A \operatorname{Cos}(W c t+2 \theta)$ is a random Process, where ' θ ' is a uniform random variable, over $(0,2 \pi)$. Check the process for mean ergodicity
b) Show that the autocorrelation function of a stationary random process is an even function of
8. a) Discuss about Statistical independence with respect to random processes 7M
b) Classify random processes and explain. 7M

UNIT-V
9. a) Discuss the relation between power spectrum and auto correlation function
b) Find the cross-correlation function for a cross-power density spectrum given below:

$$
f_{X Y}(\omega)=\frac{8}{(\alpha+j \omega)^{3}}
$$

OR

10. a) Discuss properties of cross power density spectrum 7M
b) Prove the equation $S_{X Y}(W)=S_{Y X}(-W)$. 7M

Code: 7GC43

|| B.Tech. || Semester Supplementary Examinations April 2023

Complex Variables \& Special Functions

(Common to EEE and ECE)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit (5×14 = 70 Marks)

UNIT-I

1. Separate the real and imaginary parts of Tan $h z$

OR

2. a) Symmetry of Beta function $B(m, n)=B(n, m)$
b) Evaluate $\int_{0}^{1} \frac{x^{2}}{\sqrt{1-x^{5}}} d x$ in terms of B function

UNIT-II

3. Prove that $\left.\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) \right\rvert\, \operatorname{Re}$ al $f(z)^{2}=2\left|f^{\prime}(z)\right|^{2}$ where $w=f(z)$ is analytic.

OR

4. a) Show that $f(z)=z+2 \bar{z}$ is not analytic anywhere in the complex plane. 7 M
b) Determine whether the function $2 x y+i\left(x^{2}-y^{2}\right)$ is analytic. 7 M

UNIT-III

5. Expand $f(z)=\frac{1}{z^{2}-3 z+2}$ in the region (1) $0<|z-1|<1 \quad$ (2) $1<|z|<2 \quad 14 \mathrm{M}$

OR

6. Evaluate $\int_{c}\left(y^{2}+2 x y\right) d x+\left(x^{2}-2 x y\right) d y$ where c is the boundary of the region by $y=x^{2}$ and $x=y^{2}$

UNIT-IV

7. Find the Residue of $\frac{z^{2}-2 z}{(z+1)^{2}\left(z^{2}+1\right)}$

OR

8. a) Find the poles and Residues at each pole $\frac{z e^{z}}{(z-1)^{3}}$
b) Use Residue theorem to find the number of zeros of the polynomial $z^{10}-6 z^{7}+3 z^{3}+1$ if $|z|<1$

UNIT-V

9. Find the bilinear Transformation which maps the points $(-i, 0, i)$ into the points $(-1, i, 1)$ respectively.

OR

10. Show that the transform $w=\frac{2 z+3}{z-4}$ changes the circle $x^{2}+y^{2}-4 x=0$ into the straight line $4 u+3=0$

Code: 7G342

|| B.Tech. I| Semester Supplementary Examinations April 2023

Pulse and Digital Circuits

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. A square wave whose peak-to-peak value is 1 V extends $\pm 0.5 \mathrm{~V}$ with respect to ground. The duration of the positive section is 0.1 sec and of the negative section is 0.2 sec . if this wave form impressed upon an RC differentiating circuit whose time constant is 0.2 s , what are the steady-state maximum and minimum values of the output waveform?

OR

2. a) Draw the output waveform of a Low Pass RC circuit excited by step and pulse signals with different time constants
b) Show that how High Pass RC circuit acts as a differentiator 4M

UNIT-II

3. a) Explain shunt and series clippers circuits with suitable waveforms 10M
b) What are the applications of Voltage Comparators 4 M

OR
4. a) State and Prove the clamping circuit theorem. 8M
b) Explain the operation of a two level diode clipper with the help of circuit diagram? 6 M

UNIT-III

5. Derive UTP and LTP of Schmitt trigger circuit.

OR
6. Design a Monostable multivibrator circuit that produces a pulse width of 10 m sec. Assume hfe $=30$, VCE(sat) $=0.3 \mathrm{~V}$, VBEsat $=0.7 \mathrm{~V}$ Ic $=5 \mathrm{~mA}, \mathrm{Vcc}=6 \mathrm{~V}$. $\mathrm{VBB}=1.5 \mathrm{~V}$, Q1 ON and Q2 OFF

14M

UNIT-IV

7. a) What do you mean by Voltage Time Base Generator and Current Time Base Generator
b) How to generate sweep circuit by using UJT explain with neat diagrams 10M

OR

8. a) Derive the expressions for Slope error (e_{s}), Displacement error (e_{d}), Transmission error (e_{t})
b) Distinguish the Miller and Bootstrap time base generators

UNIT-V

9. a) Define the following:
i) Propagation delay ii) Fan-in iii) Fan-out iv) Noise margin 8M
b) Compare various logic families

6 M

OR

10. a) Explain the working of Two input TTL NAND gate with neat sketches 7M
b) Explain the working of Two input ECL OR/NOR gate with neat sketches 7M
