	Hall Ticket Number :	
L	R-17	
	Code: 7GC43 II B.Tech. II Semester Supplementary Examinations May/June 2022 Complex Variables & Special Functions (Common to EEE & ECE) Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)	
1. a	(I) To show that $\Gamma\left(\frac{1}{2}\right) = \sqrt{f}$	Marks
	(-)	7M
I	b) To show that $\Gamma(n) = (n-1)\Gamma(n-1)$	7M
	OR	
	a) Show that $\Gamma(n) = \int_{0}^{1} \left(\log \frac{1}{x}\right)^{n-1} dx$, $n > 0$	7M
ł	D) Evaluate $\int_{0}^{1} \sqrt{\cot u} du$	7M
3. a		714
		7M
ſ	D) Determine whether the function $2xy + i(x^2 - y^2)$ is analytic. OR	7M
4.	State and prove Cauchy-Riemann equation in Cartesian coordinates.	14M
5.	Evaluate $\int_{c} \frac{\log z}{(z-1)^3} dz$ where $c: z-1 = \frac{1}{2}$ using Cauchy's integral formula	14M
	OR	
6.	Integrate $f(z) = x^2 + ixy$ from A(1,1) to B(2,8) along	
	(i) The straight line AB (ii) The curve $c : x = t$, $y = t^3$ UNIT-IV	14M
7.	Find the poles of the function $\frac{z+1}{z^2(z-2)}$ and Residues at the poles	14M
	OR	
8.	Evaluate $\oint_{c} \frac{4-3z}{z(z-1)(z-2)} dz$ where c is the circle $ z = \frac{3}{2}$ using Residue theorem.	14M
9.	UNIT-V Under the Transformation $w = \frac{1}{z}$ find the image of the circle $ z - 2i = 2$	4 4 5 4
	Z OR	14M

10. Determine the bilinear Transformation that maps the point (1-2i, 2+i, 2+3i) into the points (2+i, 1+3i, 4) 14M

	Ha	all Ticket Number :	1
	Co	de: 7G344	
	CO	II B.Tech. II Semester Supplementary Examinations May / June 2022	
		Field Theory and Transmission Lines	
		(Electronics and Communication Engineering)	
		ax. Marks: 70 Time: 3 Hours nswer any five full questions by choosing one question from each unit (5x14 = 70 Marks)	
		UNIT–I	Marks
1.	a)	Find the divergence and curl of vector field if $A=e^{xy} a_x + \sin xy a_y + \cos^2 xz a_z$	7M
	b)	Define Del operator ∇ or Del (function). Explain the different operations using Del operator.	7M
		OR	
2.	a)	Derive the expression for second Maxwell's equation and explain how electric field intensity (E) relates with Electric potential (V)	7M
	b)	Define Electric flux Density? Give the Relation between D & E?	7M
		UNIT–II	
3.	a)	Discuss about linear, isotropic, homogeneous mediums.	7M
	b)	Define conductor ?And explain its properties with neat sketch	7M
		OR	
4.	a)	The capacitance of the conductor formed by the two parallel metal sheets each 100cm^{2} , in area separated by a dielectric 2mm thick is $2x10^{-10} \mu\text{f}$, a potential of 20KV is applied to it. find i) electric flux ii) potential gradient in kV/m iii) the relative permittivity of materials	
		iv) Electric flux Density.	7M
	b)	Derive the expression for a capacitance of coaxial capacitor with neat schematic.	7M
_	-)	UNIT-III	
5.	a) L)	Write a technical note on Faraday's law of Electro Magnetic induction?	7M
	b)	Give the details about magnetic vector and scalar potential? OR	7M
6	a)	What will be the nature of force between the two current elements if the currents are in	
0.	a)	the same & opposite directions, explain with necessary derivations?	7M
	b)	Discuss about transformer and motional emf's using Faraday's law.	7M
	,		
7.	a)	Analyze the plane waves in lossless dielectrics	7M
	b)	Derive the wave equations for free space.	7M
		OR	
8.		Derive equations for uniform plane waves in lossy dielectrics	14M
		UNIT–V	
9.	a)	Explain primary and secondary constants of transmission line with relevant expressions.	7M
	b)	A generator of volt,1,000Hz,supplies power to 1,000Km,long open wire line terminated in Z_0 (characteristics impedance) and having following parameters : R= 10.4ohm's.,	
		L=0.0037 henry,G=0.8microohms ,C=0.00835microfarad's. calculate Z ₀ and P.	7M
		OR	• •
10.	a)	What is line distortion? Derive the condition for distortion less line?	7M
	b)	Determine and Derive condition for minimum attenuation.	7M
	,	***	

	На	all Ticket Number :	
		ode: 7G342	
		II B.Tech. II Semester Supplementary Examinations May/June 2022 Pulse and Digital Circuits (Electronics and Communication Engineering)	-
		Nax. Marks: 70 Inswer any five full questions by choosing one question from each unit (5x14 = 70 Marks)	
		UNIT-I	Marks
1.	a)	Draw the output waveform of a Low Pass RC circuit excited by step and pulse signals with different time constants	10M
	b)	Show that how High Pass RC circuit acts as a differentiator	4M
_		OR	
2.	a)	Derive the condition for perfect, over compensation of an Attenuator	10M
	b)	Applications of Attenuators	4M
3	a)	UNIT–II Discuss various types clamping circuits with the help of waveforms	10M
5.	a) b)	Applications of Clamper circuits	4M
	5)	OR	
4.	a)	With neat sketches Explain the transistor switching times.	7M
	b)	Draw the wave waveforms of (i) VBE (ii) Base current ib. (iii) collector current ic (iv) output voltage vo for a sinusoidal input signal of a transistor.	7M
5.	a)	Define the following:	
		i) Multivibrator ii)Stable State iii) Quasi stable state	6M
	b)	Importance of Commutating capacitors in multivibrators with relevant circuit diagram	8M
		OR	
6.	a)	Draw the circuit diagram of Collector Coupled Astable Multivibrator and explain its operation with the help of wave forms at base and collector	7M
	b)	Write the expression of pulse time in Monostable Multivibrator	7M
7.	a)	What is a time base signal? Explain the features of time base signal.	7M
	b)	What are the methods of generating a time base waveform OR	7M
8.	a)	Discuss the principle working of a Miller time base generator	7M
	b)	Explain operation of transistor Bootstrap time base generator with neat diagram UNIT-V	7M
9.	a)	Explain realization of two input OR gate by using RTL and DL	10M
	b)	Compare logic gate with sampling gate	4M
		OR	
10.	a)	Explain realization of two input NAND gate by using DTL and RTL	10M
	b)	Why NAND and NOR are universal gates explain ***	4M

[H	all Ticket Number :	
Į		R-17	
		Il B.Tech. II Semester Supplementary Examinations May/June 2022 Random Variables and Random Processes (Electronics and Communication Engineering) Max. Marks: 70 Time: 3 Hours	
	Ar	nswer any five full questions by choosing one question from each unit (5x14 = 70 Marks)	
		UNIT–I	Mark
•	a)	State and Prove Total Probability Theorem	7
	b)	What is Probability density Function? List out the properties of probability density function with basic equations.	7
		OR	
2.		In certain college, 25% of the boys and 10% of the girls are studying Mathematics. The girls constitute 60% of the student body. If a student is selected at random and studying mathematics, determine the probability that the student is a girl.	14
•	a)	Derive expressions for mean and variance for uniform random variable?	7
	b)	A discrete random variable X takes values from 1 to 5 with probabilities given below	
		X 1 2 3 4 5	
		P(X) 0.1 0.2 0.4 0.2 0.1	
		Compute the variance and skew of the random variable X	7
	a)	OR Write about Chebychev's inequality and mention about its characteristic function	10
	b)	Explain the following terms: (i) Variance. (ii) Skew.	4
		UNIT–III	
•	a)	Define and State the properties of joint cumulative distribution function of two random variables X and Y.	7
	b)	Explain joint moments of two random variables.	7
	2)	OR	7
-	a) b)	Verify the properties of joint characteristic function. If X is a random variable with mean 3 and variance 2, verify that the random Variables	7
	~)	'X' and $Y = -6X+22$ are orthogonal UNIT-IV	7
-	a)	Discuss about Statistical independence with respect to random processes	7
	b)	A random process is given as $X(t) = At$, where A is a uniformly distributed random variable on (0,2). Find whether $X(t)$ is wide sense stationary or not.	7
	a)	OR State and prove properties of cross correlation function	10
	b)	Brief out Correlation-ergodic Process	4
		UNIT-V	
•	a)	Prove the equation $S_{XY}(W) = S_{YX}(-W)$.	6
	b)	A wide sense stationary process X(t) has autocorrelation function $R_{XX}() = Ae^{-b }$ where $b > 0$. Derive the power spectral density function	8
	a)	OR Derive the expression for average power of a random process x(t).	6
-	b)	Obtain the average power in the random process $X(t) = A\cos(_{\circ}t+\theta)$ where A, $_{\circ}$ are real constants and θ is a random variable uniformly distributed in the range (0, 2).	8