\square

Code: 7GC43

II B.Tech. II Semester Supplementary Examinations May/June 2022

Complex Variables \& Special Functions

(Common to EEE \& ECE)
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$

UNIT-I

1. a) To show that $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$
b) To show that $\Gamma(n)=(n-1) \Gamma(n-1)$

OR

2. a) Show that $\Gamma(n)=\int_{0}^{1}\left(\log \frac{1}{x}\right)^{n-1} d x, n>0$
b) Evaluate $\int_{0}^{1} \sqrt{\cot \theta} d \theta$

UNIT-II

3. a) Show that $f(z)=z+2 \bar{z}$ is not analytic anywhere in the complex plane.
b) Determine whether the function $2 x y+i\left(x^{2}-y^{2}\right)$ is analytic.

OR

4. State and prove Cauchy-Riemann equation in Cartesian coordinates.

UNIT-III

5. Evaluate $\int_{c} \frac{\log z}{(z-1)^{3}} d z$ where $c:|z-1|=\frac{1}{2}$ using Cauchy's integral formula

OR

6. Integrate $f(z)=x^{2}+i x y$ from $\mathrm{A}(1,1)$ to $\mathrm{B}(2,8)$ along
(i) The straight line $A B$
(ii) The curve $c: x=t, y=t^{3}$

UNIT-IV

7. Find the poles of the function $\frac{z+1}{z^{2}(z-2)}$ and Residues at the poles

OR

8. Evaluate $\oint_{c} \frac{4-3 z}{z(z-1)(z-2)} d z$ where c is the circle $|z|=\frac{3}{2}$ using Residue theorem.

UNIT-V

9. Under the Transformation $w=\frac{1}{z}$ find the image of the circle $|z-2 i|=2$

OR

10. Determine the bilinear Transformation that maps the point $(1-2 i, 2+i, 2+3 i)$ into the points $(2+i, 1+3 i, 4)$
\square

Code: 7G344

|| B.Tech. II Semester Supplementary Examinations May / June 2022

Field Theory and Transmission Lines

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit (5×14 = 70 Marks)
$* * * * * * * * *$
UNIT-I

1. a) Find the divergence and curl of vector field if $A=e^{x y} a_{x}+\sin x y a_{y}+\cos ^{2} x z a_{z}$ 7M
b) Define Del operator ∇ or Del (function). Explain the different operations using Del
b) Define Del operator ∇ or Del (function). Explain the different operations using Del operator. operator. 7M 7M
OR
OR
2. a) Derive the expression for second Maxwell's equation and explain how electric field
3. a) Derive the expression for second Maxwell's equation and explain how electric field intensity (E) relates with Electric potential (V).. intensity (E) relates with Electric potential (V).. 7M 7M
b) Define Electric flux Density? Give the Relation between D \& E?
b) Define Electric flux Density? Give the Relation between D \& E? 7M 7M
UNIT-II
UNIT-II
4. a) Discuss about linear, isotropic, homogeneous mediums.
5. a) Discuss about linear, isotropic, homogeneous mediums. 7M 7M
b) Define conductor ?And explain its properties with neat sketch
b) Define conductor ?And explain its properties with neat sketch 7M 7M
OR
OR
6. a) The capacitance of the conductor formed by the two parallel metal sheets each $100 \mathrm{~cm}^{2}$,
7. a) The capacitance of the conductor formed by the two parallel metal sheets each $100 \mathrm{~cm}^{2}$, in area separated by a dielectric 2 mm thick is $2 \times 10^{-10} \mu \mathrm{f}$, a potential of 20 KV is applied to in area separated by a dielectric 2 mm thick is $2 \times 10^{-10} \mu \mathrm{f}$, a potential of 20 KV is applied to it. find i) electric flux ii) potential gradient in kV / m iii) the relative permittivity of materials it. find i) electric flux ii) potential gradient in kV / m iii) the relative permittivity of materials iv) Electric flux Density. iv) Electric flux Density. 7M 7M
b) Derive the expression for a capacitance of coaxial capacitor with neat schematic.
b) Derive the expression for a capacitance of coaxial capacitor with neat schematic. 7M 7M
UNIT-III
UNIT-III
8. a) Write a technical note on Faraday's law of Electro Magnetic induction?
9. a) Write a technical note on Faraday's law of Electro Magnetic induction? 7M 7M
b) Give the details about magnetic vector and scalar potential?
b) Give the details about magnetic vector and scalar potential? 7M 7M
OR
OR
10. a) What will be the nature of force between the two current elements if the currents are in
11. a) What will be the nature of force between the two current elements if the currents are in the same \& opposite directions, explain with necessary derivations? the same \& opposite directions, explain with necessary derivations? 7M 7M
b) Discuss about transformer and motional emf's using Faraday's law.
b) Discuss about transformer and motional emf's using Faraday's law. 7M 7M
UNIT-IV
UNIT-IV
12. a) Analyze the plane waves in lossless dielectrics
13. a) Analyze the plane waves in lossless dielectrics 7M
b) Derive the wave equations for free space.
b) Derive the wave equations for free space. 7M 7M
OR
OR
14. Derive equations for uniform plane waves in lossy dielectrics
15. Derive equations for uniform plane waves in lossy dielectrics 14M 14M
UNIT-V
UNIT-V
16. a) Explain primary and secondary constants of transmission line with relevant expressions.
17. a) Explain primary and secondary constants of transmission line with relevant expressions. 7M
b) A generator of volt, $1,000 \mathrm{~Hz}$,supplies power to $1,000 \mathrm{Km}$,long open wire line terminated in
b) A generator of volt, $1,000 \mathrm{~Hz}$,supplies power to $1,000 \mathrm{Km}$,long open wire line terminated in Z_{0} (characteristics impedance) and having following parameters : $\mathrm{R}=10.40 \mathrm{hm}$'s., Z_{0} (characteristics impedance) and having following parameters : $\mathrm{R}=10.40 \mathrm{hm}$'s., $\mathrm{L}=0.0037$ henry, $\mathrm{G}=0.8$ microohms, $\mathrm{C}=0.00835$ microfarad's. calculate Z_{0} and P . $\mathrm{L}=0.0037$ henry, $\mathrm{G}=0.8$ microohms, $\mathrm{C}=0.00835$ microfarad's. calculate Z_{0} and P 7M 7M
OR
OR
18. a) What is line distortion? Derive the condition for distortion less line?
19. a) What is line distortion? Derive the condition for distortion less line? 7M 7M
b) Determine and Derive condition for minimum attenuation.
b) Determine and Derive condition for minimum attenuation. 7M 7M
Marks
\squareHall Ticket Number :
R-17
Code: 7G342
|| B.Tech. || Semester Supplementary Examinations May/June 2022

Pulse and Digital Circuits

(Electronics and Communication Engineering)
Max. Marks: 70 Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$
Marks
UNIT-I1. a) Draw the output waveform of a Low Pass RC circuit excited by step and pulse signalswith different time constants10M
b) Show that how High Pass RC circuit acts as a differentiator 4M
OR
2. a) Derive the condition for perfect, over compensation of an Attenuator 10M
b) Applications of Attenuators 4 M
UNIT-II
3. a) Discuss various types clamping circuits with the help of waveforms 10M
b) Applications of Clamper circuits 4M
OR
4. a) With neat sketches Explain the transistor switching times. 7M
b) Draw the wave waveforms of (i) VBE (ii) Base current ib. (iii) collector current ic (iv) output voltage vo for a sinusoidal input signal of a transistor. 7M
UNIT-III
5. a) Define the following:
i) Multivibrator ii)Stable State iii) Quasi stable state 6M
b) Importance of Commutating capacitors in multivibrators with relevant circuit diagram 8M
OR
6. a) Draw the circuit diagram of Collector Coupled Astable Multivibrator and explain its operation with the help of wave forms at base and collector
b) Write the expression of pulse time in Monostable Multivibrator 7M
UNIT-IV
7. a) What is a time base signal? Explain the features of time base signal. 7M
b) What are the methods of generating a time base waveform 7M
OR
8. a) Discuss the principle working of a Miller time base generator 7M
b) Explain operation of transistor Bootstrap time base generator with neat diagram 7M
UNIT-V
9. a) Explain realization of two input OR gate by using RTL and DL 10M
b) Compare logic gate with sampling gate 4M
OR
10. a) Explain realization of two input NAND gate by using DTL and RTL 10M
b) Why NAND and NOR are universal gates explain 4 M

II B.Tech. II Semester Supplementary Examinations May/June 2022

Random Variables and Random Processes

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$

UNIT-I

1. a) State and Prove Total Probability Theorem

7M
b) What is Probability density Function? List out the properties of probability density function with basic equations.

OR

2. In certain college, 25% of the boys and 10% of the girls are studying Mathematics. The girls constitute 60% of the student body. If a student is selected at random and studying mathematics, determine the probability that the student is a girl.

UNIT-II

3. a) Derive expressions for mean and variance for uniform random variable?
b) A discrete random variable X takes values from 1 to 5 with probabilities given below

X	1	2	3	4	5
$\mathrm{P}(\mathrm{X})$	0.1	0.2	0.4	0.2	0.1

Compute the variance and skew of the random variable X
OR
4. a) Write about Chebychev's inequality and mention about its characteristic function
b) Explain the following terms: (i) Variance. (ii) Skew.

UNIT-III

5. a) Define and State the properties of joint cumulative distribution function of two random variables X and Y .

7M
b) Explain joint moments of two random variables.

OR

6. a) Verify the properties of joint characteristic function.
UNIT-IV
7. a) Discuss about Statistical independence with respect to random processes

7M
b) A random process is given as $X(t)=A t$, where A is a uniformly distributed random variable on $(0,2)$. Find whether $X(t)$ is wide sense stationary or not.

7M
OR
8. a) State and prove properties of cross correlation function
b) Brief out Correlation-ergodic Process

UNIT-V

9. a) Prove the equation $S_{X Y}(W)=S_{Y X}(-W)$.
b) A wide sense stationary process $X(t)$ has autocorrelation function $R_{x x}(T)=A e^{-b|\tau|}$ where $b>0$. Derive the power spectral density function

OR

10. a) Derive the expression for average power of a random process $x(t)$. 6 M
b) Obtain the average power in the random process $X(t)=A \cos \left(\omega_{0} t+\theta\right)$ where A, ω_{0} are real constants and θ is a random variable uniformly distributed in the range ($0,2 \pi$).
