Code: 7G343

|| B.Tech. || Semester Supplementary Examinations Nov/Dec 2019

Analog Communication

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks) *********

UNIT-I

1. a) Explain working of simple $A M$ transmitter with neat diagram and describe its blocks.
b) Derive the expression for the Modulation efficiency of the AM signal.

OR

2. a) Explain the working principle of DSB-SC modulator with neat block diagram.
b) What is VSB? What is significance VSB. 4M
UNIT-II
3. a) Draw the block diagram of Armstrong method for generating a FM signal and quote its working principle.
b) Compare of $F M \& A M$.

OR

4. a) Explain principle of operation of Balanced slope-detector for detecting the FM signal.
b) The FM signal has a sinusoidal modulation frequency 20 KHz and a modulation index $\beta=2.5$. Find the transmission bandwidth of FM using Carson's rule.

UNIT-III

5. a) Derive an expression for output SNR for DSB-SC system.
b) Write note on noise in Angle Modulation System and SNR Calculation.

OR

6. a) The available output noise power from an amplifier is 80 nW , the available power gain of the amplifier being 40 dB and the equivalent noise bandwidth being 25 MHz . Calculate the noise figure, assuming T_{0} to be $27^{\circ} \mathrm{C}$.
b) Verify that both AM-DSB-SC and AM-SSB-SC are of same noise performance.

UNIT-IV

7. a) Classify the radio Receivers based on type of modulation and service involved.
b) Analyze AM transmitters with modulation at high carrier power level.

OR

8. a) Draw the block schematics of super heterodyne receiver and explain the operation of each block.
b) List and define the performance parameters of radio receivers in detail.

UNIT-V

9. a) Describe with suitable circuit, the scheme of generation of PAM signals.
b) Explain why a single channel PPM system requires the transmission of synchronization
signal, where as a single channel PAM or PDM system does not.

OR
10. a) Describe with suitable circuit, the scheme of generation of PPM signals.
b) Explain the method of generation and detection of PAM signals with neat schematics.

Code: 7GC43

II B.Tech. II Semester Supplementary Examinations Nov/Dec 2019

Complex Variables and Special Functions

(Common to EEE \& ECE)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Show that $\beta(m, n)=\frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$
b) If $\cosh (u+i v)=x+i y$, prove that
(i) $\frac{x^{2}}{\cosh ^{2} u}+\frac{y^{2}}{\sinh ^{2} u}=1$
(ii) $\frac{x^{2}}{\cos ^{2} v}-\frac{y^{2}}{\sin ^{2} v}=1$

OR

2. a) Evaluate $\int_{0}^{\infty} e^{-a x} x^{m-1} \sin b x d x$ in terms of Gamma function.
b) Separate the real and imaginary parts of (i) $\sinh (x+i y)$ (ii) $\cosh (x+i y)$

UNIT-II

3. a) Prove that the function $f(z)$ defined by $f(z)=\frac{x^{3}(1+i)-y^{3}(1-i)}{x^{2}+y^{2}}(z \neq 0), f(0)=0$ is continuous and the Cauchy Riemann equations are satisfied at the origin, yet $f^{\prime}(0)$ does not exist.
b) Find the conjugate harmonic of $v(r, \theta)=r^{2} \cos 2 \theta-r \cos \theta+2$. Show that v is harmonic.

OR

4. a) Determine the analytic function

$$
f(z)=u+i v \text { if } u-v=\frac{\cos x+\sin x-e^{-y}}{2(\cos x-\cosh y)} \text { and } f\left(\frac{\pi}{2}\right)=0 .
$$

b) Derive Cauchy-Riemann equations in polar coordinates.

UNIT-III

5. Find the Taylor's expansion of $f(z)=\frac{2 z^{3}+1}{z^{2}+z}$ about the point $z=i$.

OR

6. If $f(z)$ is analytic inside a circle C with centre at a, then for z inside C prove that

$$
f(z)=f(a)+f^{\prime}(a)(z-a)+\frac{f^{\prime \prime}(a)}{2!}(z-a)^{2}+----+\frac{f^{n}(a)}{n!}(z-a)^{n}+----
$$

UNIT-IV

7. a) State and prove Residue theorem.
b) Evaluate $\int_{0}^{\infty} \frac{\cos a x}{x^{2}+1} d x$.

OR

8. a) Find the residue of $f(z)=\frac{z^{2}}{(z-1)^{4}(z-2)(z-3)}$ at its poles and hence evaluate $\int_{C} f(z) d z$ where C is the circle $|z|=2.5$.
b) Show that $\int_{0}^{2 \pi} \frac{\cos 2 \theta}{1-2 a \cos \theta+a^{2}} d \theta=\frac{2 \pi a^{2}}{1-a^{2}},\left(a^{2}<1\right)$

UNIT-V

9. Find the bilinear transformation which maps the points $z=1, i,-1$ onto the points $\mathrm{w}=\mathrm{i}, 0$, -i. Hence find the image of $|z|<1$,

OR
10. Show that the transformation effected by an analytic function $w=f(z)$ is conformal at every point of the Z-plane where $f^{\prime}(z) \neq 0$.

Code: 7GA41

II B.Tech. II Semester Supplementary Examinations Nov/Dec 2019

Managerial Economics and Financial Analysis

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)
\qquad

UNIT-I

1. Define Managerial Economics. Also explain the nature and scope of Managerial Economics.

OR

2. What do you mean by Elasticity of Demand? What is its importance? Explain.

UNIT-II

3. Write a short note on
a) Isoquant
b) Isocost

OR
4. What is Break Even Point? What are its assumptions? Discuss.

UNIT-III

5. What do you mean by perfect competition? What are its features? Explain.
6. What is meant by a partnership firm? What are its advantages and disadvantages?
7. What are the different sources of raising capital? Explain each of them in detail.
8. A firm is considering the following project

Cash flows in Rupees						
C_{0}	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	
$-50,000$	$+11,300$	$+12,769$	$+14,429$	$+16,305$	$+18,421$	

Calculate the NPV of the project, if the cost of capital is 10 percent.

UNIT-V

9. What is meant by trial balance? What are its features? Explain.

OR

10. You are given the trading and profit \& loss account of ABC company limited for the year ended 31 ${ }^{\text {st }}$ March2015.

Trading and Profit \& Loss Account.

Dr	Cr		
Particulars	Rs.	Particulars	Rs.
To Opening Stock	30,000	By Net Sales	$1,10,000$
To Purchases	60,000	By Closing Stock	20,000
To Wages	10,000		
To Gross Profit(c/d)	30,000		
	$1,30,000$		$1,30,000$
To Administrative Expenses	10,000	By Gross Profit(b/d)	30,000
To Selling \&Distribution	5,000	By Sundry Receipt	5,000
Expenses	20,000		
To Net Profit	35,000		35,000

Calculate
a) Gross profit ratio
b) Net Profit ratio
c) Operating ratio
d) Operating profit ratio
\square

Code: 7G342

|| B.Tech. II Semester Supplementary Examinations Nov/Dec 2019

Pulse and Digital Circuits

(Electronics and Communication Engineering)

Max. Marks: 70

Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)
\qquad

UNIT-I

1. a) Design and find the response of a Low Pass Circuit for Symmetrical Square wave input for different time constants. Also, derive the corresponding voltage expressions.
b) What is a Ringing circuit? Draw and explain its operation. 4M

OR

2. a) Which RC circuit acts as a Differentiator? Under what condition, it acts as a Differentiator? Derive that condition.
b) Determine and plot the frequency response of a Low Pass circuit for Sinusoidal input. Also, derive the necessary equations.

UNIT-II

3. a) Design Diode as Switch circuit and then verify its functionality.
b) Design any three different positive and Negative Clipper circuits with and without biasing and then draw the corresponding input, output waveforms and transfer characteristics.

OR

4. a) Illustrate different Transistor switching times and Diode switching times and then define all of them.
b) State and prove clamping circuit theorem.

UNIT-III

5. a) What is the need of triggering? What is the difference between symmetrical and unsymmetrical triggering?
b) A fixed bias Bistable has the following circuit parameters: $R_{c}=1 \mathrm{k}$, $R_{1}=3.9 \mathrm{k}, \mathrm{Vcc}=+9 \mathrm{v}$ and $\mathrm{V}_{\mathrm{BB}}=-9 \mathrm{v}$. Assume for transistor $\mathrm{V}_{\mathrm{CEsat}}=0 \mathrm{v}$, $\mathrm{V}_{\mathrm{BEsat}}=0.6 \mathrm{v}$ and $\mathrm{V}_{\mathrm{BE}(\text { (cutoff) })}=0 \mathrm{v}$. Analyse the binary, and find the stable state voltages and currents. What is the minimum value of $h_{\text {FE }}$ to satisfy the ON-OFF condition?

OR

6. a) Define the terms: stable state, semi-stable state, Duty cycle and Multivibrator.
b) Design a Monostable multivibrator circuit. Explain the principle of operation with the help of the wave forms at collector and bases of both Transistors. Also, derive an expression for pulse width.
UNIT-IV
7. a) Mention the drawbacks of the transistor voltage sweep waveform generator and suggest the methods for eliminating those drawbacks. 5M
b) With the help of the circuit diagram and expressions, explain the working of transistor Miller time base generator. 9M
OR
8. a) Define sweep speed, displacement and transmission errors. Also, derive the relation between them. 7M
b) Draw a simple current sweep circuit and explain its working with the help of diagrams. 7M
UNIT-V9. a) Define fan-In, fan-out, Propagation delay, noise margin, logic levels andPower dissipation.6M
b) Draw the circuit diagram of DTL OR gate and explain its operation. 5M
c) Define and illustrate positive and negative pulse logic systems. 3M
OR
9. a) What is pedestal? How it effect the output of a sampling gate? What are the applications of sampling gates? 5M
b) Illustrate with neat circuit diagram, the operation of unidirectional sampling gate for multiple inputs. 4M
c) Design a CMOS logic NAND gate and then explain its operation. 5M

Code: 7G344

II B.Tech. II Semester Supplementary Examinations Nov/Dec 2019

Field Theory and Transmission Lines

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

1. a) Show that the electric field intensit $\frac{\text { UNIT-I }}{\frac{\text { UNe }}{} \text { to int iin }}$ ite line charge is

$$
E=\frac{\rho_{L}}{2^{\pi \varepsilon_{0}}} a \rho
$$

b) A c ${ }_{\text {:harge of }}-0.3$ a seconc charge of

$$
W_{E}^{\prime}=\frac{1}{2} \varepsilon E^{2}
$$

b) If $d \mathbf{E}$ at $(1,2,3)$ and electrostatic energy stored in a cube
of $^{\prime}$ side $=x-y+x y+2 z v$ centered at the origin

UNIT-II

3. a) Derive the continuity equation and relaxation time
b) Find out the equivalent capacitance of two capacitors connected in (i) series (ii) parallel.

OR

4. a) Discuss polarization in dielectrics
 the cylindrical surface $\rho=2,1 \leq z \leq 5 \mathrm{~m}$.

UNIT-III

5. a) State and explain Biot-Savart law
b) Find out the magnetic field intensity due to infinite length solenoid

OR

6. a) Write the Maxwell's equation for time varying fields and give their word statement.
b) Nrite t'e $N_{\text {jistribution give on fol }}$ ime varyir tor magnetic potential + currint c ${ }^{2}$ es rise to the vec $\begin{aligned} & \text { A current } \\ & A=x^{2} y a^{x}\end{aligned}+y^{2} x a_{y}-4_{x y z}^{3 z}$ rist to the vec ${ }^{2}$ alculate
(i) $\quad B$ at $(-1,2,5)$
(ii)The flux through the surface defined by ${ }^{z=1}, 0 \leq^{x \leq 1,-1} \leq^{y \leq 4}$

UNIT-IV

7. a) Derive the wave equation for dielectric medium

(i) Calculate k, λ and T
(ii) Calculate the time t_{1} it takes the wave to travel $\lambda / 8$
(iii) Sketch the wave at time t_{1}.
8. a) Define and derive skin depth
b) A lossy dielectric has an intrinsic impedance of $200 \angle 30_{\text {o }}$ at a particular radian frequency ω. If at the frequency, the plane wave propagating through the dielectric has the magnetic field component

$$
H=10 e^{-\alpha x} \cos \left(\omega t-\frac{1}{2} x\right) a_{y} A / m
$$

Find E and α. Determine the skin depth and wave polarization.

UNIT-V

9. a) Derive the equations for characteristic impedance, attenuation constant and phase constant of a transmission line

$z 0=80 \Omega, \alpha=0.04 \stackrel{\stackrel{V}{n}-p}{\stackrel{V}{n}}, \beta=1.5 \mathrm{rad} / \mathrm{m}$. Find the line parameters $\mathrm{R}, \mathrm{L}, \mathrm{G}, \mathrm{C}$.

OR

10. a) Define and derive the equations for wavelength, phase velocity and group velocity of transmission line
b) of trej|smission lin ϵ_{S} : $\mathrm{eq}_{3} 0^{\text {ons for wavelength, phase ve }}$, city and group velocity A tell phone line ha $R=\Omega / \mathrm{km}, L=100 \mathrm{mH} / \mathrm{km}, G=1$ and $C=20 \mu \mathrm{~F} / \mathrm{km}$. At $f=1 \mathrm{KHz}$, obtain
(i) The characteristic impedance of the line
(ii) The propagation constant of the line
(iii) The phase velocity
\square

Code: 7G341

II B.Tech. II Semester Supplementary Examinations Nov/Dec 2019

Random Variables and Random Processes

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Explain about uniform and conditional random variable
b) Differentiate Probability Distribution Function and Probability Density Function. List properties of density function. Write note on PDF and CDF of Gaussian Random Variable.

OR

2. a) List and explain properties of conditional distribution
b) Find the mean of an exponential distribution.

UNIT-II

3. a) Discuss concepts of moment generation function and characteristic function of random variable.
b) Define central moment, variance and skew.
4. a) Determine the mean value $\mathcal{G}_{\text {f }}$ follow ${ }_{n} g \epsilon^{3{ }^{3}} \mathrm{XpO} h_{e n t i a l}$ function:

$$
f_{x}(x)=\frac{e^{-\left(x^{-a)} / t\right.}}{b} \quad x>a
$$

Then from that result calculate variance and skew of the same. 8M
b) Write note on Chebyshev's inequality. 6M

UNIT-III

5. a) State joint density function and discuss the properties of joint density function.
b) Explain interval conditioning and statistical independence of multiple random variables

OR

6. a) List the properties of multiple random variables. Discuss central limit theorem for sum of large Radom variable.
b) Mathematically discuss the concepts of two and N Gaussian random variable.

UNIT-IV

7. a) Define random process and state some useful classifications of random process
b) Given the random process $X(t)=A \operatorname{Sin}(\omega t+\theta), A, \omega$ are constants and θ is an uniformly distributed random variable in the interval ($-\pi, \pi$). Define a new random process $\mathrm{Y}(\mathrm{t})=\mathrm{X}^{2}(\mathrm{t})$. Find:
i. Autocorrelation function of $\mathrm{Y}(\mathrm{t})$
ii. Find the cross correlation function of $X(t)$ and $Y(t)$
8. a) Write a note on covariance function of random processes 7M
b) Given the random process $y(t)=x(t) \cos (\omega t+\theta)$, where $x(t)$ is a wide sensestationary random process that amplitude modulates a carrier of constant angularfrequency. With a random phase θ independent of $x(t)$ and uniformly distributedin the interval $),(-\pi \pi)$ Find:
i. $\quad E(y(t))$
ii. Find the autocorrelation function of $y(t)$

UNIT-V

9. a) Discuss the relationship between power density spectrum and autocorrelation function 7M
b) Find the power spectrum of random process with the following function as autocorrelation $R_{x x}(t)=\left(A^{2} / 2\right) \cos \left(\omega_{0} t\right)$ 7M
OR
10. a) Discuss properties of cross power density spectrum 7Mb) Consider two Gaussian process $\mathrm{x}(\mathrm{t})$ and $\mathrm{y}(\mathrm{t})$ with mean m 1 , m 2 and variance $\mathrm{v} 1, \mathrm{v} 2$respectively.
i. Find the cross Power Spectral Density (PSD)) $S_{x y}(w)$ and $S_{y x}(w)$
ii. Show that cross PSD function $\mathrm{S}_{\mathrm{xy}}(\mathrm{w})$ or $\mathrm{S}_{\mathrm{yx}}(\mathrm{w})$ and cross-correlation function $R_{x y}(T)$ or $R_{y x}(T)$ both are Fourier transform pair.7M
