	Ha	III Ticket Number :			
	Code: 7G344			R-17	
	CU	Il B.Tech. II Semester Supplementary Examinations Novemb	er 2023		
		Field Theory and Transmission Lines			
	Ν.Λ.	(Electronics and Communication Engineering) ax. Marks: 70	Time: 3 H		
		swer any five full questions by choosing one question from each unit (5x			
1 2 3 4 5		*****	Marks	со	BL
		UNIT–I			
1	,	Summarize the advantages and applications of Gauss law?	7M	CO1	L2
	b)	Analyze the relation between E and V	7M	CO1	L4
n		OR Contract following with expression			
2	•	Contrast following with expression. a) Coulomb's law. b) Gauss law.	14M	CO1	L2
				001	
		UNIT–II			
3	•	Derive the capacitance in Parallel Plate Capacitors	14M	CO2	L4
		OR			
4		Identify the convection and conduction currents	7M	CO2	L1
	b)	Explain the properties of materials and Dielectric Constant & strength	7M	CO2	L2
		UNIT-III			
5	. a)	Explain the Forces due to Magnetic Fields	7M	CO3	L2
	b)	Elaborate magnetic flux density	7M		L2
		OR			
	. a)	Differentiate between electric and magnetic fields	7M	CO3	L4
	b)	List the applications of amperes law and explain any one of it	7M	CO3	L1
•					
7		UNIT-IV	1 4 1 4	CO4	10
7	•	Summarize waves in general with neat wave diagrams OR	1410	CO4	LZ
6 7 8 8		With a neat diagram illustrate the concept of Poynting theorem and Poynti	ng		
)		vector	•	CO4	L4
				005	
9	•	Derive Condition for Distortion less ness and Minimum Attenuation OR	14M	CO5	L3
10	. a)	Discuss on Short Circuit (SC) and Open circuit (OC) Lines	7M	CO5	L2
.0	b)	Define Standing wave and how it produces in transmission lines			L2
	- 1	***			

L	<u> </u>	le: 7G342	
		II B.Tech. II Semester Supplementary Examinations November 2023	-
		Pulse and Digital Circuits	
		(Electronics and Communication Engineering)	
	-	IX. Marks: 70 Wer any five full questions by choosing one question from each unit (5x14 = 70 Marks)	
		UNIT–I	
1.	a)	Derive the expression for the output of a Low pass circuit excited by exponential input	
		for different time constants	1
	b)	Derive the expression for Rise time	
_	,	OR Chan that have blick Daga DO size it acts on a differentiator	
2.	a)	Show that how High Pass RC circuit acts as a differentiator	
	b)	Draw the output waveform of a High Pass RC circuit excited by square wave with different time constants	1
		UNIT-II	
3.	a)	Explain the operation of a two level diode clipper with the help of circuit diagram?	
	b)	Discuss various types clamping circuits with the help of waveforms	
		OR	
4.	a)	Draw the Emitter coupled clipper circuit and explain its transfer characteristics	
	b)	Discuss clamping circuit taking source and diode resistance into account	
		UNIT–III	
5.		Draw the circuit diagram of Fixed Bias Bistable Multivibrator and explain its operation	
		with the help of wave forms at base and collector OR	1
2	2)		
5.	a)	Derive the expression for frequency of oscillations of an Astable Multivibrator	
	b)	Draw the circuit diagram of Collector Coupled Astable Multivibrator and explain its operation with the help of wave forms at base and collector	
		UNIT–IV	
7.	a)	What are the methods of generating a time base waveform	
	b)	How is linearity corrected through adjustment of the driving waveform for a Current	
		Time Base Generator	
	,	OR Distinguish the Miller and Destators time have non-protone	
3.	a)	Distinguish the Miller and Bootstrap time base generators	
	b)	Discuss the principle working of a Miller time base generator	
~	-)	UNIT-V	
9.	a)	Discuss the advantages and disadvantages of Unidirectional sampling gate	
	b)	Explain realization of two input OR gate by using RTL and DL OR	
).	a)	Explain the working of Bidirectional diode sampling gate with neat circuit diagram	4
<i>.</i>	,	What is pedestal? How its effect the output of a sampling gate?	1
	b)		

	Hal	I Ticket Number :	
l		R-17	
	COL	Il B.Tech. II Semester Supplementary Examinations November 2023	
		Random Variables and Random Processes	
		(Electronics and Communication Engineering)	
		Time: 3 Hours swer any five full questions by choosing one question from each unit (5x14 = 70 Marks) ********	
		UNIT–I	
1.	a)	Consider the experiment of tossing two dice simultaneously. If X denotes the sum of two faces, find the probability for X 6.	7M
	b)	Discuss the Independent and mutually exclusive events with an example each.	7M
		OR	
2.	a)	State and prove Bayes Theorem.	7M
	b)	In a box there are 100 resistors whose resistances and tolerances are as shown in the table below. Let A be the event of drawing a 47 resistor, B be the event of drawing a resistor with 5% tolerance, and C be the event of drawing a 100 resistor. Find P(A/B), $P(A/C)$ and $P(B/C)$.	7M
			7101
3.	a)	Derive expressions for mean and variance for uniform random variable?	7M
•	b)	Find the Moment generating function of exponential distribution?	7M
	,	OR	
4.	a)	Obtain the characteristic function of Poisson random variable	8M
	b)	Explain the following terms: (i) Variance. (ii) Skew.	6M
		UNIT–III	
5.	a)	Explain joint moments of two random variables.	7M
	b)	Explain covariance of two random variables.	7M
		OR	
6.	a)	Verify the properties of joint characteristic function.	7M
	b)	Two statistically independent random variables X and Y have mean values $E[X] = 2$ and $E[Y] = 4$. They have second moments $E[X^2] = 8$ and $E[Y^2] = 25$. Find Variance of W = 3X-Y UNIT-IV	7M
7.	a)	List and explain various properties of Autocorrelation function	7M
	b)	If x (t) is a stationary random process having mean = 3 and auto correlation function: RXX () = 9 + $2^{ - }$. Find the mean and variance of the random variable.	7M
		OR	
8.	a)	Discuss in detail about: (i) First order stationary random process. (ii) Ergodic process.	6M
	b)	(0,2). Check the process for mean ergodicity	8M
~			
9.	a) b)	Discuss properties of cross power density spectrum	8M
	b)	Derive the expression for average power of a random process x(t). OR	6M
10.	a)	Derive the expression for power density spectrum of a random process	8M
10.	b)	Prove the equation $S_{XY}(W) = S_{YX}(-W)$.	6M
	/	***	0101

	Hall Ticket Number :	
	Code: 7GC43	
	II B.Tech. II Semester Supplementary Examinations November 2023	
	Complex Variables & Special Functions	
	(Common to EEE &ECE) Max. Marks: 70 Time: 3 Hours	
	Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)	
	UNIT-I	
1.	a) Symmetry of Beta function $B(m, n)=B(n, m)$	7M
	b) Evaluate $\int_{0}^{1} \frac{x^2}{\sqrt{1-x^5}} dx$ in terms of B function	
	$_{0}\sqrt{1-x}$ OR	7M
	f.	
2.	Prove that $\int_{0}^{\frac{f}{2}} \sin^2 u \cos^4 u d_{\mu} = \frac{f}{32}$	14M
	UNIT-II	
3.	Determine D such that the function $f(x) = \frac{1}{1} \log \left(\frac{2}{2} + \frac{2}{2} \right) + \frac{1}{2} \left(\frac{px}{2} \right)$ be an applied	
5.	Determine P such that the function $f(z) = \frac{1}{2}\log(x^2 + y^2) + i Tan^{-1}\left(\frac{px}{y}\right)$ be an analytic	14M
	function OR	
4.	Prove that z^n (n is a positive integer) is analytic and hence find its derivative.	14M
F	UNIT-III Expand Lag z, by Taylor's series about z-1	4 4 5 4
5.	Expand $Log z$ by Taylor's series about z=1. OR	14M
6.		
0.	Evaluate $\int_{(0,0)}^{(1,1)} (3x + 4xy + ix^2) dz$ along $y = x^2$	14M
		1-111
	UNIT-IV	
7.	Find the poles of the function $\frac{z+1}{z^2(z-2)}$ and Residues at the poles	14M
	OR	
8.	Evaluate $\oint \frac{4-3z}{z(z-1)(z-2)} dz$ where c is the circle $ z = \frac{3}{2}$ using Residue theorem.	1 4 1 4
01	$\int_{c} z(z-1)(z-2)^{az}$ where the original probability is a single conduct theorem.	14M
	UNIT-V	
9.		
	Under the Transformation $w = \frac{1}{z}$ find the image of the circle $ z - 2i = 2$	14M
40	OR 4	
10.	Show that the function $w = \frac{4}{z}$ transforms the straight line x=c in the z-plane into a circle	14M
	in the w-plane.	
