Hall Ticket Number :							
						JI	R-17

Code: 7G344

Il B.Tech. Il Semester Supplementary Examinations December 2022

Field Theory and Transmission Lines

(Electronics and Communication Engineering)

Max. Marks: 70 Time: 3 Hours

Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

		UNIT-I	Marks	СО	BL
1.	a)	Explain in detail about Gauss's Law	7M	CO1	L2
	b)	Summarize the advantages and applications of Gauss law?	7M	CO1	L2
		OR			
2.	a)	Define Electric field intensity? Derive Electric field intensity for surface charge.	7M	CO1	L1
	b)	Point Charges Q1=4 μ c, Q2=-5 μ c and Q3=2 μ c are located at (0,0,1).(-6,8,0) and (0,4,-3) respectively find D at the origin.	7M	CO1	L4
		UNIT-II			
3.	a)	Define Linear, Isotropic and Homogeneous Dielectrics	7M	CO2	L1
	b)	Identify the convection and conduction currents	7M	CO2	L1
	,	OR			
4.	a)	Describe the Conductors in Electric fields in material space	7M	CO2	L2
	b)	Write a note on polarization in dielectrics	7M	CO2	L2
		UNIT-III			
5.		State and explain Biot savart law with neat diagram and expressions	14M	CO3	L2
		OR			
6.	a)	Define Faradays laws and explain with suitable equation	7M	CO3	L2
	b)	Write Maxwells equations in final forms	7M	CO3	L1
		UNIT-IV			
7.	a)	Define an em wave and briefly explain waves in general	7M	CO4	L1
	b)	Compare the propagation of waves in Lossy and lossless dielectrics	7M	CO4	L3
		OR			
8.	a)	Analyze the propagation of Plane waves in Good conductors	7M	CO4	L4
	b)	Illustrate the nature of propagation of plane wave in free space	7M	CO4	L3
0	٥)	UNIT-V	71.4	COF	1.4
9.	a)	What is a Transmission Line? Label different types of transmission lines?	7M	CO5	L1
	b)	Explain transmission line primary parameters	7M	CO5	L2
10	3)	OR With the help of a post diagram explain the smith chart	71.1	COE	1.2
10.		With the help of a neat diagram explain the smith chart	7M 7M	CO5	L2
	b)	List the properties of smith chart	7M	CO5	L2

Hall Ticket Number :						
• • • • • • • • • • • • • • • • • • • •						R-17

Code: 7GA41

II B.Tech. II Semester Supplementary Examinations December 2022

Managerial Economics and Financial Accounting

(Electronics and Communication Engineering)

Time: 3 Hours Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

			***	k****					
						ı	Marks	СО	Blooms Level
			UNIT-I						
1.	Deliberate the	e importance and sco	pe of Mana	_ igerial Economi	cs?		14M	CO1	L2
		·	OR						
2.	Determine the measure such	14M	CO1	L3					
			UNIT-II						
3.	Define Cost. Analysis	Explain the different	cost conce	pts used in the	process of		14M	CO2	L2
	•		OR						
4.	Discuss the f	ollowina							
		mies of scale					7M		L2
	,	Cost Combination of I	Inputs				7M	CO2	L2
	,		UNIT-III						
5.	Describe the	features, advantages	and disac	_ Ivantages of So	ole trader for	m of			L2
•	Organization			gee er et			14M	CO3	
	· ·		OR						
6.	Briefly discus	s the price-output det	ermination	in monopolistic	competition.		14M	CO3	L2
	·		UNIT-IV		·				
7.	Discuss the f	ollowing		_					
• •		ng Capital & Its Affect	ing Factors	.			7M	CO4	L2
	b) NPV N		7M	CO4	L2				
	5) 111 1	violitou auvariagoo ai	OR	nagoo				001	
8.	Calculate Ne	t Present Value (NPV)		ahility Index (Pl) for both the	۷			
Ο.	projects.	ti resent value (ivi v	, and i fond	ability mack (i i) for both the	,			
	Years	Project-A Cash flows	in Pro	ject-B Cash in flows	PV@10%				
	1	2,50,000		3,50,000	0,909				
	2	1,80,000		1,50,000	0,826				
	3	1,20,000		1,80,000	0,751				
	4	1,10,000		80,000	0.683				
	5	75,000		60,000	0.621				
	5 (scra			40,000	0.621				
	Initial investm	nent for the project-A;	Rs.4,80,00	00 and project-E	3; Rs.6,00,00	0			

and cost of capital assumed to be 10%.

14M CO4 L3

UNIT-V

Briefly discuss various types of Accounts (Golden Rules of Accounting) with 9. examples?

14M CO5

L2

L2

OR

Define Capital Budgeting. Explain the Nature, Scope and Features of Capital 10. **Budgeting?**

14M CO5

	Hall ⁻	Ticket Number :	1
(`ode	R-17	
	Jouc	II B.Tech. II Semester Supplementary Examinations December 2022	
		Pulse and Digital Circuits	
		(Electronics and Communication Engineering)	
	-	t. Marks: 70 Time: 3 Hours ver any five full questions by choosing one question from each unit (5x14 = 70 Marks)	
•	/ \l 13 \\	*******	
		UNIT-I	
1.	a)	Draw the output waveform of a High Pass RC circuit excited by square wave with different time constants	10M
	b)	Show that how Low Pass RC circuit acts as an Integrator	4M
	D)	OR	4171
2.	a)	A 1KHZ square wave output from an amplifier has Rise time t _r =350ns and tilt=5%.	
	b \	Determine upper and lower 3-dB frequency	7M
	b)	Show that Percentage tilt P= T/2RC X 100 UNIT-II	7M
3.	a)	Explain the clamping circuit considering the source resistance and the diode	
0.	u,	forward resistance.	7M
	b)	With neat sketches Explain the transistor switching times.	7M
		OR	
4.		Explain series and shunt clippers with and without reference voltage and also	4 41 4
		explain clipping at two independent levels with help of transfer characteristics. UNIT-III	14M
5.	a)	How Astable Multivibrator acts as free running oscillator	7M
O.	b)	What are the applications of Multivibrators	7M
	/	OR	7 141
6.	a)	Explain the importance of Symmetrical triggering in Bistable multivibrator with neat	
		circuit diagram	7M
	b)	Derive the expression for frequency of oscillations of an Astable Multivibrator	7M
7.	<i>3)</i>	List out the various methods to generate a time base waveform	71.1
7.	a) b)	List out the various methods to generate a time base waveform The specifications of UJT are given as =0.6, Vv = 2 V, RBB = 5 k , Iv=1.5 mA,	7M
	D)	IP = 8 μA and VBB = 18 V. Calculate the component values of the UJT sweep	
		circuit to generate an output sweep frequency of 10kHz with sweep amplitude	71.4
		of 12 V.	7M
8.	a)	Explain the basic principles of Miller and Bootstrap time base generators.	7M
0.	b)	Discuss about Transistor Current Time Base Generator	7 M
	υ,	UNIT-V	7 101
9.	a)	Explain the working of Bidirectional diode sampling gate with neat circuit diagram	10M
	b)	What is pedestal? How its effect the output of a sampling gate?	4M
		OR	
10.	a)	Draw the four diode sampling gate and derive the expression for gain.	10M
	b)	Illustrate with neat circuit diagram, the operation of unidirectional sampling gate for multiple inputs.	4M

Ha	all Ticket Number : R-17
Со	ode: 7G341
	Il B.Tech. Il Semester Supplementary Examinations December 2022
	Random Variables and Random Processes (Electronics and Communication Engineering)
Μ	iax. Marks: 70 Time: 3 Hours
Ar	nswer any five full questions by choosing one question from each unit $(5x14 = 70 \text{ Marks})$

a)	Coin A has a probability of head =1/4 and coin B is a fair coin. Each coin is flipped four times. If
u)	X is the number of heads resulting from coin and Y denotes the same from coin B, what is the
	probability for X=Y?
b)	Explain about Conditional Distribution & Conditional Density Functions with necessary
	equations OR
a)	Define Random Variable. Write about the continuous and mixed random variables.
b)	Discuss the Independent and mutually exclusive events with an example each.
,	UNIT-II
a)	Determine the moment generating function about origin of the Poisson distribution.
b)	Obtain the variance of Raleigh random variable
,	OR
a)	Find the Moment generating function of exponential distribution?
b)	Calculate the characteristic function and first moment for $fX(x) = (1/b)exp(-(x-a)/b)$ for x a
	UNIT-III
a)	Two statistically independent random variables X and Y have mean values $E[X] = 2$ and $E[Y] = 4$. They have second moments $E[X^2] = 8$ and $E[Y^2] = 25$. Find Variance of W = 3X-Y
b)	Write short notes on jointly Gaussian random variables.
,	OR
a)	Verify the properties of joint characteristic function.
b)	Explain covariance of two random variables.
`	UNIT-IV
a)	If x (t) is a stationary random process having mean = 3 and auto correlation function: RXX () = $9 + 2^{ - }$. Find the mean and variance of the random variable.
b)	With suitable example and mathematical equations, illustrate the difference between a wide-
,	sense stationary and strict-sense stationary stochastic process
-1	OR State and prove properties of gross correlation function
a)	State and prove properties of cross correlation function
b)	Classify random processes and explain.
د.	UNIT-V Derive the relation between input DSD and output DSD of an LTI evetem
a)	Derive the relation between input PSD and output PSD of an LTI system
b)	Find power spectrum of WSS noise process N(t) with autocorrelation function defined as
	below $R_{NN}(\tau) = Pe^{-3 \tau }$
`	OR
a)	Derive the expression for power density spectrum of a random process

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

b) Discuss properties of cross power density spectrum

7M

Hall Ticket Number :						
						R-17

Code: 7G343

II B.Tech. II Semester Supplementary Examinations December 2022

Analog Communication

(Electronics and Communication Engineering)

Max. Marks: 70 Time: 3 Hours Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

		UNIT-I	Marks	СО	BL
1.	a)	What is Costas Loop? How it can be used in the detection of DSBSC signals.	7M	1	1
	b)	A 400W carrier is modulated to a depth of 75%. Find the total power of the amplitude modulation scheme by assuming the modulating signal is sinusoidal.	7M	1	4
		OR			
2.	a)	Derive an expression for single-tone amplitude modulated wave. Also draw its spectrum	7M	1	2
	b)	Explain about the SSB-SC generation method.	7M	1	2
		UNIT-II			
3.	a)	Explain about the block diagram of Indirect method of FM with its working principle.	10M	2	2
	b)	Compare between FM and AM.	4M	2	5
		OR			
4.	a)	Explain with suitable diagram, how the Narrow band FM signal may be generated.	7M	2	2
	b)	Describe the working principle of detection of FM	7M	2	2
		UNIT-III			
5.	a)	Compare AM and FM by considering noise.	7M	3	5
	b)	Discuss the role of pre-emphasis and de-emphasis in commercial FM.	7M	3	2
		OR			
6.	a)	Describe the noise performance of FM system.	7M	3	2
	b)	Determine the expression for output SNR for DSB-SC system	7M	3	3
		UNIT-IV			
7.	a)	Classify the radio Receivers based on type of modulation and service involved.	7M	4	4
	b)	Explain the effect of Image frequency on voice communication.	7M	4	2
		OR			
8.	a)	Describe the steps to improve the image frequency rejection and how it is rejected?	7M	4	2
	b)	Discuss the factors influencing the choice of Intermediate frequency for a radio receiver?	7M	4	2
		UNIT-V			
9.	a)	Describe the scheme of generation of PAM signals with neat sketches.	6M	5	2
	b)	Summarize the working principle of Frequency division multiplexing?	8M	5	2
		OR			
10.	a)	Explain the method of generation and detection of PAM signals with neat schematics.	8M	5	2
	b)	Describe with suitable circuit, the scheme of detection of PAM signals.	6M	5	2

Code	e: 7GC43	_
554	Il B.Tech. Il Semester Supplementary Examinations December 2022	
	Complex Variables and Special Functions	
	(Common to EEE & ECE)	
Max	k. Marks: 70 Time: 3 Hours	
	wer any five full questions by choosing one question from each unit ($5x14 = 70$ Marks) *********	
	UNIT-I	
	\underline{f}	
	Prove that $\int_{0}^{\frac{3}{2}} \sin^{2} u \cos^{4} u du = \frac{f}{32}$	
1.	Prove that $\sin^2 \pi \cos^4 \pi d\pi = \frac{3}{33}$	
	3 2	14M
	OR	
	$(1+i\sqrt{3})$	
	Find all principals values of $\left(\frac{\sqrt{3}}{2} + \frac{i}{\sqrt{2}}\right)^{(1+i\sqrt{3})}$	
2.	Find all principals values of $\frac{1}{2} + \frac{1}{\sqrt{2}}$	
	$(2 \sqrt{2})$	14M
	UNIT-II	
3. a)	Find all values of K, such that $f(z) = e^x [\cos ky + i \sin ky]$ is	
o. u,	. ,	71.4
	analytic.	7M
b)	Show that $f(z) = z^2$ is analytic for all z.	7M
	OR	7 101
	Prove that $\frac{7}{n}$ (n is a positive integer) is applytic and hopes find its derivative	4 45 4
4.	Prove that z^n (n is a positive integer) is analytic and hence find its derivative.	14M
	Evaluate $\int_{c}^{c} \frac{z^{3} - \sin 3z}{\left(z - \frac{f}{2}\right)^{3}} dz$ with $c: z = 2$ using Cauchy's integral formula.	
5.	Evaluate $\int \frac{1}{ z } dz$ with $c: z =2$ using Cauchy's integral formula.	
	$c \left(\frac{J}{J} \right)$	
	$\begin{pmatrix} \sim & 2 \end{pmatrix}$	4 4 5 4
	OR	14M
	Expand $Log~z$ by Taylor's series about z=1.	
6.		14M
	UNIT-IV	
	$\int_{-\infty}^{\infty} 2e^{2}$	
7.	Evaluate $\int \frac{2e^{z}}{z(z-3)}dz$ where c is $ z =2$ by residue theorem	
	$\frac{1}{c} z(z-3)$	14M
	OR	
	2f 1 2f	
8.	Show that $\int_{0}^{2f} \frac{1}{2 + \cos \pi} d\pi = \frac{2f}{\sqrt{3}}$	
	$\int_{0}^{3} 2 + \cos \pi$ $\sqrt{3}$	14M
	UNIT-V	14111
9.	Show that the image of the hyperbola $x^2 - y^2 = 1$ under the Transformation	
9.	Show that the image of the hyperbola $x - y = 1$ under the Transformation	
	1 2	
	$w = \frac{1}{1}$ is the Lemniscate $^2 = \cos 2W$	
	${\mathcal Z}$	14M
	OR 4	
10	Show that the function $w=-$ transforms the straight line x=c in the z-plane into	
10.		
	${\cal Z}$ a circle in the w-plane.	14M
	a and a mile it planter	

Hall Ticket Number: