Hall Ticket Number :										

Code: 7G144

II B.Tech. Il Semester Supplementary Examinations April 2023

Object Oriented Programming using JAVA

(Computer Science and Engineering)
Time: 3 Hours
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
UNIT-I

1. a) Explain the benefits and applications of OOPs
b) List and explain the java buzz words.

Marks CO BL

OR
2. a) Write a java program to find any given number is palindrome or not

8M 13
b) Explain the importance of byte code in java programming

6M 1 2
UNIT-II
3. a) Write a program to demonstrate static variables, methods and blocks.
b) Explain the differences between abstract class and interface

7M 23

OR
4. a) Differentiate between method overloading and method overriding with an example.
b) Explain the keywords this, static, super and final with one example each.

7M 22
7M 22

UNIT-III

5. a) Write a java program to display the priority of a thread.

7M 33
b) What is an exception? In what way it is differ from error? Explain.

7M 3 1,2

OR

6. a) With the help of an example, explain multithreading by extending Thread class
b) Distinguish between final and finally keywords

UNIT-IV
7. a) Write about the different lambda parameter passing techniques.
b) Give brief description about the java's generic classes.

OR
8. a) What are the restrictions on generics usage? Explain briefly.
b) Explain predefine functional interfaces.

7M 32
7M 32

7M 43
7M 41

7M 42

UNIT-V

9. a) Explain the differences between Vector and Arrays. Explain the methods in Vector class.
b) Explain various interfaces used in Collection framework?

OR
10. a) Explain the importance of Hash set interface in java
b) What is Scanner class? Describe the details of Scanner class.

Hall Ticket Number :										

Code: 7G145

R-17

II B.Tech. II Semester Supplementary Examinations April 2023

Operating Systems

(Computer Science and Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) What is the purpose of an operating system? What are its design goals?

7M CO1
L1
b) What are the essential properties of the batch, real-time, and distributed operating system?

7M CO1 L1

OR

2. a) What is the purpose of interrupting? What are the differences between a trap and an interrupt?

7M CO1 L4
b) What is distributed system? Explain with a neat diagram, how it is different from a computer network?

7M CO1 L4

UNIT-II

3. a) Provide two programming examples in which multithreading does not provide better performance than a single-threaded solution.
b) Discuss in detail threading Issues?

7 M CO2 L5
7 M CO2 L2
4. a) Identify the Importance of Atomic transactions in executing critical sections?

7 M CO2 L3
b) Show that the two-phase locking protocol ensures conflict serializability?

7 M CO2 L4
UNIT-III
5. a) Explain different Contiguous Memory allocation strategies with a neat diagram?

7M CO3 L2
b) Describe the parameters to be considered for evaluating a memory management strategy?

7M CO3 L4

OR

6. a) What is the optimistic assumption made in the deadlock-detection algorithm? How can this assumption be violated?
$6 \mathrm{M} \quad \mathrm{CO} 3 \quad \mathrm{~L} 4$
b) Explain the use of a resource allocation graph in detecting deadlocks with a suitable example?

8M CO3 L3

UNIT-IV

7. a) What are points to be considered in file system design? Explain the following file allocation methods (i) Contiguous allocation (ii) i-node.

8M CO4 L2
b) Why must the bit map for file allocation be kept on mass storage, rather than in main memory?

6 M CO4 L2
8. a) What is Mounting? Describe file system mounting with a neat diagram? 7M CO4 L3
b) What is Directory? List and explain Directory implementation methods with a neat diagram?

7M CO4 L2

UNIT-V

9. a) Discuss the strengths and weaknesses of implementing an access matrix using access lists that are associated with objects?

7 M CO5 L2
b) Write a short note on the Revocation of access rights? 7M CO5 L

OR

10. a) How are the access-matrix facility and the role-based access-control facility similar? How do they differ?

7M CO5 L4
b) Explain about domains of protection?

Code: 7GC42

I| B.Tech. I| Semester Supplementary Examinations April 2023

Probability and Statistics
 (Common to CE , ME and CSE)

Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) A card is drawn from a pack of 52 cards. Find the probability of getting a king or a heart or a red card.
b) A University bought $45 \%, 25 \%$ and 30% of computers from HCL, WIPRO and IBM respectively and $2 \%, 3 \%$ and 1% of these were found to be defective. Find the probability of a computer selected at random is found to be defective?

OR

2. a) Define the following (i) Sample Space (ii) event (iii) Outcome (iv) Probability
b) If two dice are throw, Find the probability of getting a sum is 10

UNIT-II

3. a) The weekly wages of 1000 workmen are normally distributed around a mean of Rs. 70 with a standard deviation of Rs. 5 . Estimate the number of workers whose weekly wages will be (i) Between Rs. 69 and Rs. 72 (ii) Less than Rs. 69 (iii)More than Rs. 72.
b) Out of 800 families with 5 children each, how many would you expect to have (i) 3 boys (ii) 5 girls (iii) either 2 or 3 boys? Assume equal probabilities for boys and girls.

OR

4. a) A random variable x has the following probability function values of x.

x	-2	-1	0	1	2	3
$\mathrm{P}(\mathrm{x})$	0.1	K	0.2	2 k	0.3	k

Find the values $\mathrm{K}, P(X \geq-1), P(X \leq 2)$
b) Fit a poisson distribution to the frequency distribution

x	0	1	2	3	4
f	46	38	22	9	1

5. a) A population consists of $5,10,14,18,13,24$. Consider all possible samples of size 2 which can be drawn without replacement from this population. Find the population mean and standard deviation, and mean and standard deviation of the sampling distribution of means.
b) Find 95% confidence limits for the mean of a normality distributed population from which the following sample was taken $15,17,10,18,16,9,7,11,13,14$.

OR

6. a) A random sample of size 81 was taken whose variance is 20.25 and mean is 32. Construct 98% confidence interval.
b) A random sample size 100 is taken from a population with $\sigma=5.1$. Given that the sample mean $\bar{x}=21.6$. Construct a 95% confidence interval for population mean.

UNIT-IV

7. To examine the hypothesis that the husbands are more intelligent that the wives an investigator took a sample of 10 couples and administered them a test which measures the I.Q. The results are as follows

Husbands	117	105	97	105	123	109	86	78	103	107
Wives	106	98	87	104	116	95	90	69	108	85

Test the hypothesis with a reasonable test at the level of significance of 0.05 .

OR

8. a) In a sample of 1000 people in Karnataka, 540 are rice eaters and the rest are wheat eaters can we assume that both rice and wheat are equally popular in this state at 1% of level of significance.
b) Tests performed with a random sample of 40 engineers produced by a large manufacture. Show that they have a mean thermal effect of 31.45% with a standard deviation 1.6% at 0.01 level of significance. Test the null hypothesis $\mu=32.3 \%$, against the alternative hypothesis $\mu \neq 32.3 \%$.

UNIT-V

9. a) The time taken by workers in performing a job by method I and method II is given below

Method I	20	16	26	27	23	22	-
Method II	27	33	42	35	32	34	38

Do the data show that the variances of time distribution from population from which these samples are drawn do not differ significantly?
b) The following table gives the classification of 100workers according to sex and nature of work. Test whether the nature of work is independent of the sex of the worker.

	Stable	Unstable	Total
Males	40	20	60
Females	10	30	40
Total	50	50	100
OR			

10. The measurements of the output of two units have given the following results. Assuming that both samples have been obtained from the normal populations at 10% significant level, Test whether the two populations have the same variance

Unit-A	14.1	10.1	14.7	13.7	14.0
Unit-B	14.0	14.5	13.7	12.7	14.1

\square

Code: 7G142

R-19

|| B.Tech. || Semester Supplementary Examinations April 2023 Design and Analysis of Algorithms
(Computer Science and Engineering)
Time: 3 Hours
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Write an algorithm for finding n natural numbers

7M CO1 1
b) Explain the algorithm for Fibonacci sequence of n numbers

7M CO1 2
OR
2. a) Compare and contrast between iterative and recursive process

7M CO1 5
b) How do we analyze algorithms? Explain

7M CO1 5

UNIT-II

3. Explain about prims algorithm with an example

OR
4. a) What are the applications of greedy method
$7 \mathrm{M} \quad \mathrm{CO} 22$
b) Explain the general method of greedy method
$7 \mathrm{M} \quad \mathrm{CO} 2$
UNIT-III
5. a) What does dynamic programming have in common with divide and conquer
b) Explain the applications of dynamic programming
$7 \mathrm{M} \quad \mathrm{CO} 34$
$7 \mathrm{M} \quad \mathrm{CO} 32$
6. Explain about Travelling sales person problem using dynamic programming $14 \mathrm{M} \quad \mathrm{CO} 3$

UNIT-IV

7. a) Write in detail 8 queens problem

7M \quad CO4 4
b) Explain the control abstraction for back tracking method

7M CO4 2
OR
8. a) Explain properties of LC search $7 \mathrm{M} \operatorname{CO4} 2$
b) Write the control abstraction of LC branch and bound method $\quad 7 \mathrm{M} \quad \mathrm{CO} 4$

UNIT-V
9. a) Explain in detail the classes of P and NP with examples $\quad 7 \mathrm{M} \quad \mathrm{CO} \quad 2$
b) Explain the strategy to prove that a problem is NP hard in detail $7 \mathrm{M} \quad \mathrm{CO} 5 \quad 2$ OR
10. State and Explain COOKS theorem in detail $\quad 14 \mathrm{M} \quad$ CO5 $\quad 1,2$

Formal Languages and Automata Theory

(Computer Science and Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Define Alphabets, Strings and Languages with examples?

6M CO1 L1
b) Construct DFA equivalent to the following NFA. Show the acceptance of the string 00011 on both the Fas. Assume that q 0 is the start state and q 3 is final state?

	0	1
$q 0$	$\{q 0, q 1\}$	$\{q 0\}$
$q 1$	-	$\{q 2\}$
$q 2$	-	$\{q 3\}$
$q 3$	-	-

OR

2. a) Compare and contrast Moore Machine with Melay Machine?
b) Design a DFA that accepts the language over the alphabet, $\Sigma=\{0,1,2\}$ where the decimal equivalent of the language is divisible by 3 ?

9M CO1 L6

UNIT-II

3. a) Explain the closure properties of regular languages?

6 M CO L2
b) Construct a Finite Automata for the regular expression?

$$
(0+1)(1+10)^{*}
$$

8M CO2 L5

OR

4. a) Define a Regular expression. Find regular expressions for the following languages over the alphabet $\{a, b\}$.
i. All strings of odd length
ii. All strings that end with either ab or b

10M CO1 L5

5M CO1 L5
b) Explain minimization of CFG with the following example?

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{aA} \mid \mathrm{aBB} \\
& \mathrm{~A} \rightarrow \mathrm{aAA} \mid \epsilon \\
& \mathrm{B} \rightarrow \mathrm{bB} \mid \mathrm{bbC}
\end{aligned}
$$

$$
\mathrm{C} \rightarrow \mathrm{~B} \quad 8 \mathrm{M} \mathrm{CO3} \quad \mathrm{~L} 2
$$

OR
6. a) Construct a FA recognizing the following regular grammar?

$$
\mathrm{S} \rightarrow \mathrm{aS} / \mathrm{bA} / \mathrm{b}
$$

$$
\mathrm{A} \rightarrow \mathrm{aA} / \mathrm{bS} / \mathrm{a} \quad 6 \mathrm{M} \text { co3 L5 }
$$

b) Convert the given CFG to CNF?

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{aAs} / \mathrm{a} \\
& \mathrm{~A} \rightarrow \mathrm{SbA} / \mathrm{SS} / \mathrm{ba}
\end{aligned}
$$

8M CO3 L6

UNIT-IV

7. a) Write and explain about Push Down Automata? 4M CO4 L1
b) Construct a PDA that accepts the language $L=\left\{w c w^{R} / w \in\{a, b\}\right\}$? 10 M CO4 $L 5$

OR

8. a) Describe equivalence of CFL and PDA with appropriate example? 6M CO4 L2
b) Design PDA to accept the following CFG?

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{AA} / \mathrm{a} \\
& \mathrm{~A} \rightarrow \mathrm{SA} / \mathrm{b} \\
& \quad \text { UNIT-V }
\end{aligned}
$$

$$
\mathrm{A} \rightarrow \mathrm{SA} / \mathrm{b} \quad 8 \mathrm{M} \mathrm{CO4} \mathrm{L6}
$$

9. a) Write short notes on Liner Bounded Automaton?

4M CO5 L4
b) Design Turing's Machine to accept the language $L=\left\{a^{n} b^{n} c^{n} /\right.$ $n \geq 1\}$. Also give the graphical representation and Instantaneous description (ID) for the import "aabbcc"?

10M Co5 L6
OR
10. a) Write and explain about Counter machines?

6M CO5 L2
b) Design a TM for $L=\left\{0^{n} 1^{n} \mid n \geq 1\right\}$

8M CO5 L6

