	На	II Ticket Number :														1
Į	Cod	de: 7G144												R-17		
		II B.Tech. II	Seme	ster S	ממט	lem	ento	arv E	xar	ninc	ition	is Apr	il 202	3		
			ect C					,						-		
			(Co	mpute	er Sc	ienc	e ar	nd Er	ngin	eerir	ng)		- '	0.11		
Ď		ax. Marks: 70 swer any five full qu	estion.	s by cl	noosi	-	ne q *****	uesti	on fr	om e	each	unit (e: 3 Hc 70 Ma		
9 .2 .40, will be incared as introproceed. .0 .5 .7 .0 .5 .7					Γ	UN	IT–I							Marks	СО	BL
<u></u> .	a)	Explain the benefits	s and a	pplica	tions									7M	1	2
с С С	b)	List and explain the	e java k	ouzz w	ords.									7M	1	1,2
במום						0	R									
g 2.	a)	Write a java progra	im to fi	nd any	give	n nur	nber	is pa	alindr	ome	or n	ot		8M	1	3
, will	b)	Explain the importa	ance of	byte c	ode i	in jav	a pro	ogran	nmin	g				6M	1	2
							IT–II			-						
¥ 3.	,	Write a program to									d blo	cks.		7M	2	3
	b)	Explain the differer	nces be	tween	abst			and	inter	face				7M	2	2
4.	a)	Differentiate betwe	oon m	othod	ovorl	O		nd n	aatha	nd or	vorrie	ling y	vith on			
≧ 4. 2	a)	example.		eniou	Uven	Uaun	iy a		IEUIC	Ju U	verno	ung w	nin an	7M	2	2
	b)	Explain the keywor	ds this	, static	, sup	er an	d fin	al wit	:h on	e exa	ampl	e each	۱.	7M	2	2
n ha	,						T–III									
5 5.	a)	Write a java progra	im to d	splay	the p	riority	/ of a	thre	ad.					7M	3	3
ซิ วิ	b)	What is an exception	on? In	what w	/ay it	is dif	fer fr	om e	rror?	' Exp	lain.			7M	3	1,2
alua						0	R									
	a)	With the help of a	an exa	mple,	expla	ain n	nultit	hread	ding	by e	exten	ding 7	Thread		2	2
מו	b)	class	n final	and fir			ordo							7M 7M	3 3	2 2
, app	b)	Distinguish betwee	ii iiidi		ially r		T–IV							7 111	3	Z
7	a)	Write about the diff	erent l	ambda	para				tech	nniau	es.			7M	4	3
	b)	Give brief descripti			•		•							7M	4	1
	,	·			•	0										
ວ ກີ 8.	a)	What are the restri	ctions	on gen	erics	usag	je? E	xpla	in bri	efly.				7M	4	2
A COLL	b)	Explain predefine f	unctior	al inte	rface	s.								7M	4	2
Σ Σ						UN	T–V									
2. Vily revealing or identification, appeal to .	a)	Explain the differe	nces b	etwee	n Ve	ctor a	and <i>i</i>	Array	s. E	xplai	n the	e meth	ods in		-	0
•	b)	Vector class.	orfocos	usod	in Co	llocti	on fr	omov	vork	2				7M 7M	5 5	2
	b)	Explain various inte		นระบ		0 וויניטוווי		anev	VUK					<i>t</i> IVI	J	2
10	a)	Explain the importa	ance of	Hash	set ir			iava						7M	5	2
.0.	b)	What is Scanner cl						-		clas	s.			7M	5	1,2
	,						**								-	, –

L		Il Ticket Number :	R-17	/
		II B.Tech. II Semester Supplementary Examinations April 202	23	
		Operating Systems		
		(Computer Science and Engineering)		
			ne:3+	
	Ans	swer any five full questions by choosing one question from each unit (5x14 : ********	= /0 M	arks)
			Marks	СО
	-)			004
١.	a) b)	What is the purpose of an operating system? What are its design goals? What are the essential properties of the batch, real-time, and distributed	7M	CO1
	b)	operating system?	7M	CO1
		OR		
2.	a)	What is the purpose of interrupting? What are the differences between a trap		
		and an interrupt?	7M	CO1
	b)	What is distributed system? Explain with a neat diagram, how it is different		004
		from a computer network?	7M	CO1
3.	a)	Provide two programming examples in which multithreading does <i>not</i> provide		
0.	u)	better performance than a single-threaded solution.	7M	CO2
	b)	Discuss in detail threading Issues?	7M	CO2
		OR		
4.	a)	Identify the Importance of Atomic transactions in executing critical sections?	7M	CO2
	b)	Show that the two-phase locking protocol ensures conflict serializability?	7M	CO2
		UNIT–III		
5.	a)	Explain different Contiguous Memory allocation strategies with a neat diagram?	7M	CO3
	b)	Describe the parameters to be considered for evaluating a memory		
		management strategy?	7M	CO3
6	c)	OR		
6.	a)	What is the optimistic assumption made in the deadlock-detection algorithm? How can this assumption be violated?	6M	CO3
	b)	Explain the use of a resource allocation graph in detecting deadlocks with a		
	,	suitable example?	8M	CO3
		UNIT–IV		
7.	a)	What are points to be considered in file system design? Explain the following	014	CO4
	b)	file allocation methods (i) Contiguous allocation (ii) i-node. Why must the bit map for file allocation be kept on mass storage, rather than in	8M	CO4
	0)	main memory?	6M	CO4
		OR		
8.	a)	What is Mounting? Describe file system mounting with a neat diagram?	7M	CO4
	b)	What is Directory? List and explain Directory implementation methods with a		
		neat diagram?	7M	CO4
^	c)	UNIT-V		
9.	a)	Discuss the strengths and weaknesses of implementing an access matrix using access lists that are associated with objects?	7M	CO5
	b)	Write a short note on the Revocation of access rights?	7M	CO5
	,	OR		
		the second descent and the fact that and the second s		
0.	a)	How are the access-matrix facility and the role-based access-control facility		
0.	a) b)	How are the access-matrix facility and the role-based access-control facility similar? How do they differ? Explain about domains of protection?	7M 7M	CO5 CO5

ŀ	Hall	Ticket Num	oer ·												
														R	-17
C	.0a	e: 7GC42 II B.Tec	ch. II Ser	nest	er Si	ממנ	lem	ento	arv E	xan	nina	tion	s Apri	2023	
					rob				-				- 1		
				(Co	omm	non	o C	E , N	NE ar	nd C	SE)			- .	0.11
	-	x. Marks: 70 wer any five i	full questi	ions k	by ch	oosii	<u> </u>	ne q *****	uesti	on fre	om e	each	unit (5		3 Hours) Marks)
							UN	IT-I							Marks
1. a	a)	A card is dra		•	k of	52 ca			l the	prob	abilit	y of g	getting	a king	6M
k	b)	A University IBM respecti	bought 45	5%,2					•						-
		Find the prob	ability of	a con	npute	er sel		d at r DR	ando	m is	foun	d to l	be defe	ective?	8M
	a)	Define the fol	• • •		-	•	• •					. ,	Probab	ility	8M
t	b)	If two dice are	e throw ,	Find 1	the pr	robal		-	etting	a su	m is′	10			6M
3. a	a)	The weekly v	Naues of	1000	Worl	(mer	-	IT–II	nally	diet	rihute	nd ar	ound a	meen	
J. č	а)	of Rs.70 with	•						•						
		whose weekly wages will be (i) Between Rs.69 and Rs.72 (ii) Less than Rs.69													
L	۲										7M				
Ĺ	b)	Out of 800 families with 5 children each, how many would you expect to have (i) 3 boys (ii) 5 girls (iii) either 2 or 3 boys? Assume equal probabilities for boys and girls. 7N									7M				
		OR													
4. a	a)	A random va	riable x ha	as the	e follo	wing	, pro	babili	ity fu	nctio	n val	ues c	of x.		
		x	-2	-	1		0		1			2	:	3	
		P(x)	0.1		K		0.2		2k		C	.3		k	
		Find the value	es K, $P(X)$	$X \ge -1$	1), P($X \leq$	2)								7M
k	b)	Fit a poisson		on to	the fr	eque	ency		butio	n					
		X	0		1			2			3		4		
		f	46		3	8		22			9		1		7M
5. a	a)	A population size 2 which population m the sampling	can be d ean and	rawn stand	witho ard c	out re levia	5, 13, eplac	eme	nt fro	om th	nis po	opula	tion. F	ind the	7M
k	b)	Find 95% cor from which th								•			• •		7M
				-	-)R							
6. a	a)	A random sat 32. Construct						nose	varia	nce	is 20	.25 a	nd mea	an is	7M
k	b)	A random san the sample m	•					• •							
		mean.													7M

UNIT–IV

7. To examine the hypothesis that the husbands are more intelligent that the wives an investigator took a sample of 10 couples and administered them a test which measures the I.Q. The results are as follows

Husbands	117	105	97	105	123	109	86	78	103	107
Wives	106	98	87	104	116	95	90	69	108	85

Test the hypothesis with a reasonable test at the level of significance of 0.05.

OR

- 8. a) In a sample of 1000 people in Karnataka, 540 are rice eaters and the rest are wheat eaters can we assume that both rice and wheat are equally popular in this state at 1% of level of significance.
 - b) Tests performed with a random sample of 40 engineers produced by a large manufacture. Show that they have a mean thermal effect of 31.45% with a standard deviation 1.6% at 0.01level of significance. Test the null hypothesis ~ = 32.3%, against the alternative hypothesis ~ $\neq 32.3\%$.

7M

7M

UNIT–V

9. a) The time taken by workers in performing a job by method I and method II is given below

Method I	20	16	26	27	23	22	-
Method II	27	33	42	35	32	34	38

Do the data show that the variances of time distribution from population from which these samples are drawn do not differ significantly?

b) The following table gives the classification of 100workers according to sex and nature of work. Test whether the nature of work is independent of the sex of the worker.

	Stable	Unstable	Total					
Males	40	20	60					
Females	10	30	40					
Total	50	50	100					
OR								

10. The measurements of the output of two units have given the following results. Assuming that both samples have been obtained from the normal populations at 10% significant level, Test whether the two populations have the same variance

Unit-A	14.1	10.1	14.7	13.7	14.0	
Unit-B	14.0	14.5	13.7	12.7	14.1	14M

7M

14M

7M

	Мс		2023 [ime: 3		-
1	-	Design and Analysis of Algorithms (Computer Science and Engineering) ax. Marks: 70			
1	-	(Computer Science and Engineering) ax. Marks: 70	lime 3 l		
1	-		lime · 3 I		
1	Ans				
1		swer any five full questions by choosing one question from each unit (5x1	4 = 70 N	1arks)	
1			Marks	со	BL
1		UNIT-I			
••	a)	Write an algorithm for finding n natural numbers	7M	CO1	1
	b)	Explain the algorithm for Fibonacci sequence of n numbers	7M	CO1	2
•	、	OR		004	_
2.	a)	Compare and contrast between iterative and recursive process	7M	CO1	5
	b)	How do we analyze algorithms? Explain	7M	CO1	5
2		UNIT-II	4 4 5 4	<u> </u>	2
3.		Explain about prims algorithm with an example OR	1410	CO2	2
4.	a)	What are the applications of greedy method	7M	CO2	2
ч.	b)	Explain the general method of greedy method	7M	CO2	2
	5)	Explain the general method of greedy method	7 1 1 1	002	2
		UNIT–III			
5.	a)	What does dynamic programming have in common with divide and conquer	7M	CO3	4
-	b)	Explain the applications of dynamic programming	7M	CO3	2
	- /	OR			
6.		Explain about Travelling sales person problem using dynamic programming	14M	CO3	2
 3. 4. 5. 6. 7. 8. 9. 		UNIT-IV			
7.	a)	Write in detail 8 queens problem	7M	CO4	4
	b)	Explain the control abstraction for back tracking method	7M	CO4	2
		OR			
8.	a)	Explain properties of LC search	7M	CO4	2
	b)	Write the control abstraction of LC branch and bound method	7M	CO4	4
		UNIT–V			
9.	a)	Explain in detail the classes of P and NP with examples	7M	CO5	2
	b)	Explain the strategy to prove that a problem is NP hard in detail	7M	CO5	2
		OR			
10.		State and Explain COOKS theorem in detail	14M	CO5	1,2

Code: 7G143 Il B.Tech. Il Semester Supplementary Examinations April 2023 Formal Languages and Automata Theory (Computer Science and Engineering)	R-17		
II B.Tech. II Semester Supplementary Examinations April 2023 Formal Languages and Automata Theory (Computer Science and Engineering)	3		
(Computer Science and Engineering)	•		
	e: 3 Hc		
Answer any five full questions by choosing one question from each unit (5x14 =	70 Mai	rks)	
	Marks	CO	В
UNIT-I	CM		
 a) Define Alphabets, Strings and Languages with examples? b) Construct DEA convincient to the following NEA. Show the 	0IVI	CO1	Ľ
b) Construct DFA equivalent to the following NFA. Show the acceptance of the string 00011 on both the Fas. Assume that			
q0 is the start state and q3 is final state?			
0 1			
q0 {q0,q1} {q0}			
q1 - {q2}			
q2 - {q3}			
q3	10M	CO1	L
OR			
2. a) Compare and contrast Moore Machine with Melay Machine?	5M	CO1	Ľ
b) Design a DFA that accepts the language over the alphabet,			
= $\{0, 1, 2\}$ where the decimal equivalent of the language is			
divisible by 3?	9M	CO1	L
UNIT-II 2 a) Evolution the electric properties of regular languages?	6M	000	
3. a) Explain the closure properties of regular languages?b) Construct a Finite Automata for the regular expression?	OIVI	CO2	L
(0+1)(1+10)*	8M	CO2	17
OR	0	002	L.
4. a) Define a Regular expression. Find regular expressions for the			
following languages over the alphabet {a, b}.			
i. All strings of odd length			
ii. All strings that end with either ab or b			Ľ
iii. All strings that contain even number of a's		CO2	
b) Show that the Language L = $\{a^{i^2} / i \}$ is not regular?	6M	CO2	L
UNIT–III 5. a) List the closure properties of Context Free Languages?	~	CO3	

	Co	ode: 7G	143						
b)	Explain minimization of CFG with the following example?								
	S aA aBB								
	A aAA								
	B bB bbC								
	C B	8M	CO3	L2					
	OR								
6. a)	Construct a FA recognizing the following regular grammar?								
	S aS/bA/b								
	A aA/bS/a	6M	CO3	L5					
b)	Convert the given CFG to CNF?								
	S aAs/ a								
	A SbA/SS/ba	8M	CO3	L6					
UNIT–IV									
7. a)	Write and explain about Push Down Automata?	4M	CO4	L1					
b)	Construct a PDA that accepts the language L={wcw ^R /w \in {a, b}}?	10M	CO4	L5					
	OR								
8. a)	Describe equivalence of CFL and PDA with appropriate example?	6M	CO4	L2					
b)	Design PDA to accept the following CFG?								
	S AA/a								
	A SA/b	8M	CO4	L6					
	UNIT-V								
9. a)	Write short notes on Liner Bounded Automaton?	4M	CO5	L4					
b)	Design Turing's Machine to accept the language L={a ⁿ b ⁿ c ⁿ /								
	n 1}. Also give the graphical representation and Instantaneous								
	description (ID) for the import "aabbcc"?	10M	CO5	L6					
	OR								
10. a)	Write and explain about Counter machines?	6M	CO5	L2					
b)	Design a TM for $L = \{0^n 1^n n 1\}$	8M	CO5	L6					
