	Ha	all Ticket Number : R-17	7
	Co	de: 7G144	
		II B.Tech. II Semester Supplementary Examinations May / June 2022	
		Object Oriented Programming using JAVA	
		(Computer Science and Engineering) .ax. Marks: 70 Time: 3 Hours	
		nswer any five full questions by choosing one question from each unit (5x14 = 70 Marks) *********	
			Marks
	-)		714
1.	a) b)	Write a sample java program to find the GCD of two numbers.	7M
	b)	What is an array? How arrays are declared and initialized? Explain with examples. OR	7M
2	a)		
Ζ.	a)	What is method overloading? Define two methods in class that have identical method names and parameter profile with different return values types or different modifier?	7M
	b)	Write a Java program to check whether two strings are equal or not without using built-in	
	,	functions.	7M
		UNIT–II	
3.	a)	Explain inheritance and its types? How runtime polymorphism can be achieved using	
		inheritance, explain with a suitable program?	7M
	b)	Explain abstract class with an example and compare with interface.	7M
		OR	
4.	a)	"Interface variables are static and final by default in Java" - Support this statement with proper explanation.	7M
	b)	With the help of a code segment, Taking three classes into consideration represent	
		multilevel inheritance between them using the code as well as diagram.	7M
		UNIT–III	
5.	a)	What is an Exception? Explain the exception hierarchy and how to throw, catch and handle	
	L \	Exceptions with example.	7M
	b)	With the help of an example, explain multithreading by extending Thread class.	7M
e	2)	OR What is multithreading? Evoluin how multithreading in single processor evotom is different.	
0.	a)	What is multithreading? Explain how multithreading in single processor system is different from multithreading in multiprocessor system.	7M
	b)	Write a program for example of try and catch block. In this check whether the given array	
	-,	size is negative or not.	7M
		UNIT-IV	
7.	a)	Discuss in detail about the collection interfaces	14M
		OR	
8.	a)	What are the three parts of a Lambda Expression? What is the type of Lambda Expression?	7M
	b)	Write about Method reference feature in Lambda expressions with example.	7M
		UNIT-V	
		Explain any four legacy classes of Java's collection Framework	
9.	a)		7M
9.	a) b)	Explain the methods defined by List Iterator interface.	7M 7M
	b)	Explain the methods defined by List Iterator interface. OR	7M
9. 10.	b)	Explain the methods defined by List Iterator interface.	

	Ha	all Ticket Number :]
	Co	de: 7G145]
		II B.Tech. II Semester Supplementary Examinations May / June 2022	
		Operating Systems	
		(Computer Science and Engineering)	
		ax. Marks: 70 Time: 3 Hours nswer any five full questions by choosing one question from each unit (5x14 = 70 Marks)	
			Marl
4		UNIT-I	4 41
1.		Explain the different type of Operating System Structures with neat diagrams. OR	14
2.	a)	Design the execution of RPC for Client-Server Communication	7
Ζ.	a) b)	Create a Process in UNIX using fork () /system call.	7 7
	0)	Create a Process in ONIX using fork () /system can.	'
		UNIT-II	
3.	a)	Describe the Multithreading Models with related diagrams	7
	b)	Summarize the differences between Single threaded and multi-threaded processes.	7
	-,	OR	
4.	a)	Develop a C program for Multithreaded concept using the Pthreads API.	7
	b)	Develop a code for Dining – Philosophers problem using Monitors.	7
		UNIT–III	
5.	a)	Discus protection in paging.	7
	b)	What is Thrashing? Mention the cause of Thrashing.	7
		OR	
6.	a)	In memory management how users view of a program represented? Discuss in detail.	7
	b)	What is a page fault? Explain the procedure for handling page faults with a neat diagram	7
_		UNIT-IV	_
7.	,	List the Directory implementation methods.	7
	b)	Draw and explain Magnetic disk structure with a diagram.	7
~	-)	OR	_
8.	,	Discus about Windows XP access control list management	7
	b)	Evaluate SCAN scheduling for the given Queue. 98, 183, 37, 122, 14, 124, 65, 67	7
9.	a)	UNIT-V Explain in detail about Transforming I/O request to hardware operations	8
9.	a) b)	List the goals and principles of Protection.	6
	5)	OR	C
0	a)	Write about password vulnerabilities and OTP's	7
0.	a) b)	What is DMZ? Explain its importance in Firewalls's	7
	5)		'

	all Ticket Number :	
Co	de: 7GC42	
	II B.Tech. II Semester Supplementary Examinations May/June 2022 Probability and Statistics	
	(Common to CE, ME & CSE)	
Μ	ax. Marks: 70 Time: 3 Hours	
Ar	nswer any five full questions by choosing one question from each unit (5x14 = 70 Marks)	
	*****	N
	UNIT–I	
a)	Given $P(A)=1/4$, $P(B)=1/3$ and $P(AUB) = 1/2$, then evaluate (i) $P(A/B)$,(ii) $P(B/A)$,	
	(iii) P(A∩B°), (iv) P(A°/B°)	
b)	A card is drawn from a pack of 52 playing cards. What is the probability of drawing black	
	card.	
	OR	
a)	A class consists of 6 girls and 10 boys. If a committee of 3 is chosen at random from the class, find the probability that (i) 3 boys are selected, (ii) exactly 2 girls are selected.	
b)	Two dice are thrown and their sum is 7. Find the probability that at least one of the dice	
,	shows up 2	
	UNIT–II	
a)	A die is thrown 6 times. If getting an even number is a success, find the probabilities of	
	(i) at least one success (ii) 3 successes (iii) 4 successes	
b)	A continuous random variable x has a probability density function	
	$f(x) = \begin{cases} \frac{(x+1)}{2}, -1 \le x \le 1\\ 0 \text{ else where} \end{cases}$	
	$f(x) = \begin{cases} 2 \\ 0 \\ 0 \end{cases}$ else where	
	represents the density of a random variable x, then find $P(X \le 0)$, mean and variance.	
	OR	
	For the normal distribution with mean 2 and standard deviation 4, evaluate (i) $P(-6 < m < 2)$ (ii) $P(m > 5)$ and (iii) $P(-4 < m < 4)$	
	(i) $P(-6 < x < 3)$, (ii) $P(x \ge 5)$ and (iii) $P(-4 < x < 4)$	
、		
a)	The variance of population is 2. The size of the sample collected from the population is 169. What is the standard error of mean	
b)	A population consists of 5, 10, 14, 18, 13, 24. Consider all possible samples of size 2	
0)	which can be drawn without replacement from this population. Find the population mean	
	and standard deviation, and mean and standard deviation of the sampling distribution of	
	means.	
	OR	
a)	A random sample of 100 teachers in a large metropolitan area revealed a mean weekly salary of Ps 487 with a standard doviation rs 48. With what degree of confidence can	
	salary of Rs.487 with a standard deviation rs 48. With what degree of confidence can assert that the average weekly salary of all teachers in the metropolitan area is between	
	472 to 502?	
b)	What is the size of the smallest sample required to estimate an unknown proportion to	

Page **1** of **2**

UNIT–IV

7. In a random sample of 60 works, the average time taken by them to get work is 33.8min with a S.D of 6.1 min can we reject the null hypothesis $\sim = 15150$ min in the favour of 14M alternative hypothesis $\sim > 15150$ at 0.05 level of significance.

OR

8. A manufacturer of electronic equipment subjects sample of two completing brands of transistors to an accelerated performance test. If 45 of 180transistors of the first kind and 34 of 120 transistors of the second kind fail the test. What he conclude at the level of significance r = 0.05 about the difference between the corresponding sample proportions.

9. The following data give the number of air-craft accidents that occurred during the various days of a week

Day	Mon	Tue	Wed	Thu	Fri	sat
No.of accidents	15	29	13	12	16	15

Test whether the accidents are uniformly distributed over the week.

OR

10. Two random sample drawn from two normal populations have the variable values as below

Sample1	19	17	16	28	22	23	19	24	26			
Sample2	28	32	40	37	30	35	40	28	41	45	30	36

Obtain the estimate of the variance of the population and f test whether the two population have the same variance.

14M

14M

14M

	Ha	all Ticket Number :	I
	Co	ode: 7G141	
	CU	Il B.Tech. II Semester Supplementary Examinations May/June 2022	
		Computer Organization	
	• •	(Computer Science and Engineering) ax. Marks: 70 Time: 3 Hours	
		nswer any five full questions by choosing one question from each unit (5x14 = 70 Marks)	
		UNIT-I	Marks
1.	a)	Define a Bus? Draw and describe the functioning of a single bus structure?	7M
	b)	Perform the arithmetic operation in binary using 2's complement representation.	714
		(i). (+42) + (-13) (ii) (-42) – (-13). OR	7M
2.	a)	List and discuss the different functional units of a computer?	7M
	b)	Distinguish between Fixed point and Floating-point representation of a given	714
		Number?	7M
3.	a)	Define is register transfer language? Explain the basic symbols used in register	
	,	Transfer?	7M
	b)	Elaborate about shift micro-operations with examples? OR	7M
4.	a)	Illustrate different types of instructions with examples. Compare their relative merits and	
	,	demerits?	7M
	b)	For the pattern, $X = (A+B)^*(C+D)$, Explain Three, Two, One, and Zero-address instructions by giving the syntax?	7M
		UNIT–III	
5.	a)	Describe microinstruction sequencing in detail?	7M
	b)	Define is a micro-operation? Explain the four different types of micro-operations? OR	7M
6	a)	Define microprogramming? Explain the microprogrammed control?	7M
0.	۵, b)	Explain microprogram sequencer organization with a neat diagram?	7M
	,	UNIT-IV	
7.	a)	Define Memory? With a neat diagram explain memory hierarchy?	7M
	b)	Elaborate about Virtual Memory in detail?	7M
Q	a)	OR Draw and explain the flow chart for the division algorithm?	7M
0.	a) b)	Discuss the significance of transaction look aside buffer in virtual memory?	7M
	2)		7 171
9.	a)	Describe, the possible way for executing multiple functional units with a processor.	7M
	b)	Elaborate on the significance of parallel processing?	7M
		OR	
10.	,	Define is Direct Memory Access (DMA) transfer? Describe the working of DMA controller?	7M
	b)	Describe the techniques for handling control hazards in pipelining?	7M

		all Ticket Number :														R-17	
	Co	de: 7G142							_						. L		
		ll B.Tech. II Ser												ay/J	lune	€ 2022	
				-				-			gorit jineer						
	М	ax. Marks: 70	10		0010			o ui		''e		in ig	,,		Ti	me: 3 H	ours
	Ar	nswer any five full qu	vestic	ons b	y ch	oosii	-		uest	ior	n from	eo	ICh	unit (5x14	l = 70 Mc	arks)
							****	****									Ma
						UN	IT–I										
I. :	a)	Explain omega nota	tion	with	suita	ble e	exam	ple									
	b)	Explain how the tim	e cor	mple	xity c	of an	algo	rithm	is c	on	nputed	1.					
						C	R										
2.	a)	Write the non-recu	rsive	algo	orithn	n for	find	ing 1	he	Fib	onacc	ci so	erie	s and	d de	rive its t	
		complexity.															
	b)	Describe the perform	manc	e an	alysi												
,	~)	Write the general m	otho	d of	ماني زامار	UNI					aab						
3.	,	Write the general m						•	app	010	acn						
	b)	Describe algorithm	anaiy	/515 (חומ וכ	•	Searc DR	11									
1	a)	Write divide and cor		r roo	urciv			oort (مامم	ith	m	1 40	rive	that	limo	complay	itv
	a) b)	Suggest refinement	•				-		-		iii anc	i ue	iive		ume	complex	ity
	0)	ouggest rennement	5 10 1	nerg		UNI			ace.								
5.	a)	List the features of o	dvna	mic r	oroar												
	⊆, b)	Show the general p	-	•	0		0	oara	mmi	na.							
	- /	<u><u></u></u>			,		R	5		3							
S. 1	a)	Write the pseudo co	ode d	of the	e dyn	amio	c pro	gram	min	g a	algorith	٦m	for	optim	nal bi	nary sea	irch
	,	tree.			,		•	0		0	U			•			
	b)	Discuss the dynami	c pro	gran	nmin	g sol	ution	is for	the	tra	velling	g sa	ales	pers	on p	roblem.	
						UNI	T–IV										
7.	a)	Draw the portion of	f stat	ie sp	ace	tree	for 4	1 que	een's	s p	robler	n u	isin	g vari	iable	tuple si	
		approach.					-	-									
	b)	List the applications	of b	ranc	h and			netho	od.								
	,		·)R										
3.		Write an algorithm of															
	b)	Distinguish betweer	h bac	ktrad	cking			ich a	nd b	ou	nd						
	~)	Evaluin the strategy	ton		that	UNI			ים ה	~ ~ ~	L						
	a) b)	1 00	•			•		n is i	NP N	arc	1						
	b)	Explain non-determ	misti	U SOI	ung		em DR										
)	a)	Differentiate betwee	n da	torm	inicti			-dot	orm	inic	stic alc	nori	hm	c .			
).	ć	Differentiate betwee How are P and NP						i-uel	CIII	1115		JOII		э.			
	b)			ems	reidl	eu	÷	**									

					1	· [1	1	1	1	1	1	1		
	Ha	all Ticket Number :												D 17]
	Code: 7G143														
	II B.Tech. II Semester Supplementary Examinations May/June 2022														
	Formal Languages and Automata Theory														
	(Computer Science and Engineering)														
	Max. Marks: 70 Time: 3 Hours														
	Answer any five full questions by choosing one question from each unit $(5x14 = 70 \text{ Marks})$														
	***** Ma														Marks
	UNIT-I														WAIKS
1.	a)	List the applications	of fi	nite :	autor										7M
	с, b)	Define Chomsky hie													7M
	D)	Denne Chomsky nie			lang										7 101
~	-)		NI		_	U	R								
2.	a)	Consider the followi	ng N	FA-6	Ξ										
		0	q1)												
		Ů /	Y												
		E	1												
		qo	1												
		1	$ \rightarrow $												
		(q ₂												
		(\bigcirc												
		i Oomenute the	1				h	4							
		i. Compute the													014
		ii. Remove ∈-N					INFA	-e.							8M
	b)	Distinguish betweer	1 DFA	A an	d NF										6M
						UNI									
3.	a)	Construct a DFA for	' the	regu	lar e	xpres	ssion	r = (a+b)	*abb					9M
	b)	Define recursive de	finitio	on of	Reg	ular I	Expre	essio	n						5M
							(OR							
4.	a)	Construct the regula	ar exp	ores	sion	acce	pted	by fo	ollowi	ng fi	nite a	auton	naton.		
		a													
		→@), (°	,)												
		Aren	/												
		а b)	a												
		X d	5												
		(9/2)-b (9	38	a,b											
															8M
	b)	Describe a pumping	lem	ma.	Wha	t are	its a	pplica	ation	s?					6M
						UNI	T—III								
5.	a)	Convert the followin	g CF	G to	GN	F									
		S→ AA / a													
		A→ SS / b													14M
	b)														
						С	R								

6.	a)	Define ambiguity of the grammar. Show that the following grammar is ambiguous. S \rightarrow a / Sa / bSS / SSb / SbS	7M
	b)		7 1 1 1
	0)	L={ $x^n y^n z^n / n \ge 1$ }	7M
		UNIT-IV	
7.	a)	Design PDA for the language L={ a ⁿ b ⁿ / n >=1 }	7M
	b)	Construct PDA equivalent to the following CFG.	
		E→ +EE / *EE / id	7M
		OR	
8.	a)	Define PDA, DPDA and DCFL.	7M
	b)	Describe Final state acceptability and Empty Stack acceptability in PDA.	7M
		UNIT-V	
9.	a)	Explain various types of Turing machines.	6M
	b)	Construct Turing Machine to compute addition function for two unary numbers f(X,Y) =	
		X+Y	8M
		OR	
10.	a)	Construct LR(0) items for the grammar given, find its equivalent DFA.	
		$S' \to S$	
		$S \rightarrow A $	
		$A \rightarrow a \ A \ b \qquad \lambda \text{ is null.}$	9M
	b)	Explain about the Post's Correspondence Problem	5M
