	Ha	all Ticket Number :													
	<u> </u>	de: 7G141					I		I		<u> </u>	<u>]</u>		R-17	
		II B.Tech. II Se	emes	ster	Sui	əlac	eme	ntar	v Ex	ami	nati	ons	Aua	ust 2021	
						-	er (- 0		
			(Co	mp	oute	er Sci	ienc	e ar	nd Er	ngine	eerir	ng)			
		ax. Marks: 70	.	a la 1	ما م	:-						a a la		Time: 3 Hou	
	Ar	nswer any five full que	estion	s dy	y cn	OOSI		1e qi *****	Jestic	on ire	om e	acn	Unit (5x14 = 70 Marks	5)
						I	JNIT	-1							
а	a)	Draw the functional dia	•			•									
b)	Demonstrate r's comp			and	• •		•	nent	of a	num	ber?	Write	the 1's and 2's	
		complement for i) 1	01101	11		ii	i)0110								
a	-)	Explain various buses	such	26	intor	nal	OR	-	(O e)	etom	bode	troce	and	data bus?	
	a)	•				-									
Ľ)	How many different wa	ays a	neg	Jalive				be pro	sem	eu	musi	ale w	iti example :	
	-)	Define instruction form	nat? F)rou	1 200		JNIT-		neie e	omn	ıtor i	netru	ction f	ormate?	
	a)	How effective addres				•				•					
Ľ)	example?	5 5	eva	luate	su u	sing	Regi	SIEI	Auui	5201	ig ivi	ouer		
		oxampio:					OR								
2	a)	Demonstrate different	arithr	neti	c mi	cro-o	_		vith e	xamr	oles?				
	 a) Demonstrate different arithmetic micro-operation with examples? b) List and describe the logical micro-operations? Explain about applications of logical micro 							of logical micro-							
L)	operation?	logiot			opor	anon	0. L	Apian		at u	opno		or logical micro	
						U	INIT-	-111							
а	a)	Describe control men	nory \	with	add	lress	sequ	Jenc	e?						
b)	Describe microinstruct	tion s	equ	enciı	ng in	detai	il?							
	,			-		•	OR								
		List and describe th	ne de	esig	n go	oals	while	e de	signi	ng t	he C	Contr	ol Un	it? Explain the	
		Hardwired control a	and M	Aicr	о р	rogra	amme	ed c	ontro	I. M	entic	on th	neir a	dvantages and	
		disadvantages?													1
						U	NIT-	IV							
а	a)	Define ROM? Descril	be Re	ead-	Only	y me	mory	with	its ty	/pes	?				
b)	Describe Cache men	nory?	' Ex	plair	n the	diffe	erent	map	ping	tech	niqu	es us	ed in the usage	
		of Cache memory.													
			•	_			OR								
	a)	Define is Auxiliary mem		•					-					•	
b)	Perform the 2's comp (-13) * (-10) using Bo							e sig	ned I	nteg	er op	eranc	IS:	
			0113	100	orun		JNIT-								
а	a)	Elaborate on the proce	ess of	f Pip	elini			-							
	5)	Explain the connectior		•		•	it-out	put d	evice	S					
	,				-	1	OR	•	-						
		Define the handshak	•	•	als?	Expl	ain tł	ne ha	andsl	nake	cont	rol c	of data	transfer during	
		input and output oper													1

		Hall Ticket Number :	
		R-17	
	C	Line: 7G142 Il B.Tech. Il Semester Supplementary Examinations August 2021]
		Design and Analysis of Algorithms	
		(Computer Science and Engineering)	
		Max. Marks: 70 Time: 3 Hou	
	/	Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks ********	s)
		UNIT–I	
1.	a)	Describe and define Big oh, little oh Asymptotic notations in detail.	7M
	b)	Distinguish between algorithm and pseudo code.	7M
		OR	
2.	a)	Write the algorithm for finding the factorial of a given number and find its time complexity.	7M
	b)	Explain the space complexity in detail	7M
		UNIT–II	
3.	a)	Differentiate between divide and conquer and greedy method	7M
	b)	What are the applications of divide and conquer	7M
		OR	
4.	a)	Solve the Job sequencing problem given n-5, (p1,p2,p3,p4,p5)=(1,5,20,15,10) deadlines	
		(d1,d2,d3,d4,d5)=(1,2,4,1,3) using greedy strategy.	7M
	b)	What is spanning tree? Explain prims algorithm with an example.	7M
		UNIT–III	
5.	a)	What are the advantages of reliability design problem?	7M
	b)	List the applications of all pairs shortest path problem.	7M
		OR	
6.	a)	Write the algorithm to compute 0/1 knapsack problem using dynamic programming.	7M
	b)	What is the running time of 0/1 knapsack problem by using dynamic programming?	7M
		UNIT–IV	
7.	a)	Explain the general method analysis of backtracking	7M
	b)	List the applications of backtracking method.	7M
		OR	
8.	a)	Describe travelling sales problem and discuss how to solve it by using branch and bound.	7M
	b)	Write about L-C search algorithm in detail.	7M
		UNIT–V	
9.	a)	Differentiate between NP complete and NP hard.	7M
	b)	Explain the classes of NP hard and NP complete.	7M
	-	OR	
10.		Let S be an NP complete problem and Q and R be two other problems not known to be in NP. Q is polynomial time reducible to S and S is polynomial reducible to P. Then P is NP.	
		NP. Q is polynomial time reducible to S and S is polynomial reducible to R. Then R is NP complete. Justify.	14M

		et Number : R-17	
Code		143	
	II	B.Tech. II Semester Supplementary Examinations August 2021	
		Formal Languages and Automata Theory (Computer Science Engineering)	
Max.	. Mc	irks: 70 Time: 3 Ho	urs
A	nsw	er all five units by choosing one question from each unit (5 x 14 = 70 Marks)	
	、		•
1.	a)	Define Alphabets, Strings and Languages, with examples.	6
	b)	Draw a DFA which accepts strings with 0's and 1's such that string contain the substring Three consecutive ones.	8
		OR	
2.	a)	Write a procedure for convert NFA-c moves it into DFA moves with example	7
	b)	Distinguish between Moore and Melay machines with an example.	7
		UNIT–II	
3.	a)	Construct NFA for the Regular Expression $(a^* + b^* + c^*)$.	4
	b)	Construct a Finite Automata for the regular expression (0+1)*1(1+0)*	10
		OR	
4.	a)	Write regular expression for the following	
		 i) The set of all Strings of 0's and 1's string begin with 0 or 1 and not having two consecutive 0's. 	
		ii) The set of all strings over {0,1} having even number of 0's and even number of 1's.	
		iii) The set of all strings with 1100 as substring over the $=$ {0,1}	9
	b)	Covert the following automation to a Regular Expression.	
		0,1	
		starte At	
			_
			5
F	c)		
5.	a)	Define CFG. Write CFG for the following languages. i. $L = \{ a^{i}b^{j}c^{k} i+j = k, i = 0, j = 0 \}$	
		ii. $L = \{a^{n}b^{m}c^{k} n+2m = k\}$	7
	b)	Converting the following CFG into CNF	
	~)	S→XA/BB, B→b/SB ,X→b ,A→a	7
		OR	
		Page 1	of

6.	a)	What is ambiguous grammar? Show that the grammar shown below is ambiguous.	
0.	a)	S AB aaB, A Aa a, B b	6M
	L)		0111
	b)	Define CNF and GNF. Convert the following grammar to CNF	
		S ASB , A aAS a, B SbS A bb	8M
		UNIT–IV	
7.	a)	Design a PDA to accept the following language $L = \{ 0^{2n}1^n \mid n = 1 \}$	8M
	b)	Write procedure for constructing CFG for given PDA	6M
		OR	
8.	a)	Convert the following grammar to a PDA that accepts the same language by	
		empty stack.	
		S aABB aAA, A aBB a, B bBB A, C a	8M
	b)	Explain the working of a PDA with a neat diagram.	6M
		UNIT–V	
9.	a)	What is Turing machine? Explain different types of Turing machines?	6M
	b)	Design a Turing Machine to accept L = { ww ^R w (a+b)* }	8M
		OR	
10.	a)	Explain Church's hypothesis.	5M
	b)	Explain	
	- /	i. Counter Machine	
		ii. Recursively Enumerable Languages	9M
			3111

		Hall Ticket Number :	
		Code: 7G144	
	C	II B.Tech. II Semester Supplementary Examinations August 2021	
		Object Oriented Programming Using Java	
		(Computer Science and Engineering)	
		Max. Marks: 70 Time: 3 Hou	
	/	Answer any five full questions by choosing one question from each unit (5x14 = 70 Mark ********	5)
		UNIT–I	
•	a)	Explain the three OOPs principles briefly with examples.	7
	b)	Explain features of Java in brief.	7
	-)	OR	
•	a)	What are class and objects? Explain how an object can be constructed from a class with suitable example.	7
	b)	Describe the various operators used in Java with their classifications. Explain left shift and	
	0)	right shift operators with suitable examples.	7
		UNIT–II	
	a)	Explain the keywords this, static, super and final with one example each.	7
	b)	How do you achieve multiple inheritance in java? Give Example.	-
	-)	OR	_
•	a) b)	Explain the process of creating and accessing packages with suitable example	-
	b)	What is polymorphism? Explain runtime polymorphism with a program.	
		UNIT-III	
5.	a)	What is the difference between checked and unchecked exception? Write the code	
	,	segments for each type.	7
	b)	Explain thread life cycle in detail	7
		OR	
•		What is an Exception? List out the keywords for exception handing and write steps to develop user defined exception.	14
			1-
		UNIT-IV	
	a)	Write about the generic interfaces.	-
	b)	What are the three parts of a Lambda Expression? What is the type of Lambda Expression?	-
	,	OR	
8.	a)	Explain the working of Stream interface?	-
	b)	Compare and contrast between ArrayList and LinkedList Classes	-
	,	UNIT-V	-
•	a) h)	Give brief description about TreeSet class?	-
	b)	List the various constructors present in Scanner class. OR	-
	a)	Explain about LinkedList class in java with example.	-
	⊆, b)	What is Scanner class? Describe the details of Scanner class.	-
	- /	***	

		Hall Ticket Number : R-17	
	C	Code: 7G145	
		II B.Tech. II Semester Supplementary Examinations August 2021 Operating Systems	
		(Computer Science and Engineering)	
	Ν	Nax. Marks: 70 Time: 3 Ho	Urs
	/	Answer any five full questions by choosing one question from each unit (5x14 = 70 Mark	(s

		UNIT–I	
1.	a)	List the Operating System Operations.	71
	b)	Discus about Special Purpose Systems.	71
		OR	
2.	a)	Define a Process. Draw the Queuing-diagram of process scheduling	71
	b)	Solve the Producer_Consumer problem using shared memory concept	71
_	,	UNIT-II	
3.	a)	Define Monitor. Recite the syntax of a Monitor	71
	b)	Identify the Importance of Atomic transactions in executing critical section. OR	71
4.	a)	Discuss in detail about threading Issues.	14
	<i></i> ,		
		UNIT–III	
5.	a)	Write in detail about Memory Allocation methods	71
	b)	Differentiate between internal fragmentation and External fragmentation.	71
		OR	
5.	a)	Apply the FIFO and LRU page replacement algorithms for the following string.7, 0, 1, 2, 0, 3,	10
	L)	0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1.	10I 4I
	b)	Explain the Buddy System in kernel memory.	41
		UNIT-IV	
7.	a)	List the File attributes and operations.	91
	b)	Explain about file system organization in detail	51
	2)	OR	
8.	a)	Discus the importance of storage area network.	71
	b)	Describe the RAID level 3 in RAID structure	71
		UNIT–V	
9.	a)	Discus about different types of standard security attacks.	71
	b)	What is Cryptography? Explain about Encryption and Decryption mechanisms.	71
h	2)	OR Draw and explain about PC bus structure.	10
Э.	a)	Draw and Explain about F C bus situliure.	101
	b)	Define Polling	41

[Ha	I Ticket Nun	nber :							г			
L	Cor	le: 7GC42									R-1	7	
			ech II Se	emeste	r Sup	plemer	ntarv F	xamir	ations	: Auai	ust 2021		
		11 0.10		51110510	•	ability			ianona	, nogi	031 2021		
				(C		on to C			E)				
	M	ax. Marks: 7	0	,					,		Time:	3 Hours	
	Ar	nswer any fiv	ve full qu	estions b	y cho	osing on *****	e ques	tion froi	m each	n unit (5x14 = 70) Marks)	
						UNIT-	-1						
1.	. a) Define the following (i) Sample Space (ii) event (iii) Outcome (iv) Probability												8M
	b)	Two marble and15 orar probability th	nge marb	les, with	n repla	acement	being i	made a	after ea		-		6M
					. ,	OR							
2.	a)	State and pr	rove Addi	tion theor	em on	probabili	ty for tw	vo event	S.				8M
	b)	If two dice a	re throw ,	Find the	proba	bility of g	etting a	sum is1	0				6M
3.		A random va	ariable X	has the fo	ollowin	UNIT– g probabi		tion					
0.			X	0	1	3	4	5	6	7			
			P(X)	0	K	2K	2K	3K	K ²	7K ² +	·K		
		Find the val	. ,	ii)Evalua	te $p(0)$	$\langle x \langle 5 \rangle$	(iii) Eva	aluate <i>n</i> l	(x < 5)				4 4 5 4
					P (0	OR	()		(****)				14M
4.		The mean a	nd varian	ce of a b	inomia	-	X with	parame	ters n ai	nd p ar	e 16 and 8	B. Find	
ч.			IP(x > 2)					parame					14M
						UNIT-							
5.		A population	n consists	of the fo	ur nun	nbers 3, 7	', 11, 15	. Consid	der all p	ossible	samples	of size	
		2 which can		•						• •			
		standard de	viation, a	na mean	and st	andard de OR	eviation	or the s	ampling	anstrib	ution of m	eans.	14M
6.		It is desired	to estima	te the me	an nu		ours of	continue	2012	untila (certain co	mouter	
0.		will first req										•	
		that one will	l be able	to assert	with 9	90% confi	dence t	hat the	sample	mean	is off by a	t most	
		10 hours.											14M
_		A	6.04 - 14			UNIT-I			(h.)-, h,				
7.	a)	A sample of from a popu				•		•		•	ied as a s	sample	7M
	b)	In a big city			•	•				•	this infor	mation	
	~)	supports the											7M
						OR							
8.		According to						•		•			
		years old ha											
		If 45 ($n = 4$			-			•	•	•			
		null hypothe		5.2, aga	anst tr	ie allema	alive ny	potnesis	5~>1	5.2 at	une 0.01		1 4 5 4
		Significance	•			UNIT-	V						14M
9.		In an investi	dation on	the mac	hine p			ollowing	results	are ob	tained		
0.			30.001 011			lo. of units				of defe			
			Machin	el			75			17		-	
			Machin	e II		4	50			22			
		Test whethe	er there is	any sign	ificant	•	nce of ty	wo macl	hines at	= 0.0)5		14M
4.0		1	- 4e	00 4		OR followin		ta	o h to b	ما			
10.		4 coins were			and th		<u> </u>			u,	Λ	7	
			of Heads	0		1 52	2 54		3 31		4	-	

Frequency175254316Under the assumption that coins are unbiased, find the expected frequencies of 0,1,2,3,4heads and test the googness of fit for=0.05

14M