	н	all Ticket Number :			
			R-1	9]
	C	Dde: 19A142T II B.Tech. II Semester Supplementary Examinations February	2022		J
		Concrete Technology	LULL		
		(Civil Engineering)	_		
		Tir nswer any five full questions by choosing one question from each unit (5x14 ********		Hours Marks)	
			Marks	со	Blooms Level
		UNIT–I			
1.	a)	List out various types of cement indicating their use for different applications.	7M	CO1	L2
	b)	What are the important tests conducted on cement to determine its quality?	7M	CO1	L2
	,	OR			
2.	a)	What are the effects of the shape and texture of aggregates on the strength and workability of concrete?	7M	CO1	L2
	b)	List various types of tests conducted on coarse aggregate indicating the	7 101	001	LZ
	5)	property being tested.	7M	CO1	L2
		UNIT–II			
3.		Discuss about various methods of checking the workability at site?	14M	CO2	L2
		OR			
4.		Explain the following non-destructive tests.			
		(i) Rebound hammer (ii) Ultrasonic pulse velocity.	14M	CO2	L4
5.	2)	UNIT–III Explain in brief about the effects of improper curing of concrete.	10M	CO3	L2
5.	a) b)	Write a short note on self curing of concrete?	4M	CO3	L2 L2
	0)	OR	-111	005	LZ
6.	a)	Define shrinkage and creep. Why are shrinkage and creep treated together?	7M	CO3	L4
0.	⊆, b)	What are the factors that affect the shrinkage and creep of concrete?	7M	CO3	 L4
	,				
7.		Design a concrete mix as per IS 10262: 2009, for the following data:			
		Characteristic strength f_{ck} at 28 days: 40 N/mm ² .			
		Cement to be used: Ordinary Portland, Workability = low,			
		Coarse aggregate: 20 mm,			
		Fine aggregate = Natural Sand.			
		Specific gravity of fine aggregate = 2.8 .	14M	CO4	L4
		Specific gravity of coarse aggregate = 2.7. OR		004	LT
8.		Explain in detail about the provisions of durability and quality of concrete, in			
		accordance to IS 456: 2000.	14M	CO4	L4
		UNIT–V			
9.		What is self compacting concrete? Explain the self compacting concrete mix	4 4 5 4	005	
		design guidelines of EFNARC.	14M	CO5	L5
10.	a)	OR What are the different types of polymers used in concrete?	7M	CO5	L5
10.	a) b)	What are the uses of polymer concrete? What are the key property improvements	7 171	000	20
	~)	one can realize by use of polymers in concrete?	7M	CO5	L5
		END			

ŀ	Hall Ticket Number :		
	ode: 19A144T	R-19	
	II B.Tech. II Semester Supplementary Examinations February 2	2022	
	Hydraulics Engineering (Civil Engineering)	-022	
	Nax. Marks: 70 Tin	ne: 3 H	
Ar	nswer any five full questions by choosing one question from each unit (5x14	= 70 Mc	arks)
		Marks	CO Blooms
	UNIT–I		Level
1. a)	Explain the characteristics of laminar and turbulent boundary layer.	7M	L2
b)	Which factors affect the thickness or boundary layer?	7M	L1
	OR		
2.	For a linear velocity distribution in the boundary layer prove that		
	$\frac{\Delta^*}{O^*} = 3 \text{ and } \frac{\Delta^{**}}{\Delta} = \frac{1}{4}$,		
		14M	L3
o \		714	
3.a)	What is the difference between pipe flow and open channel flow?	7M	L2
b)	Give the relation between Chezy's constant and manning constant.	7M	L3
4.	OR Derive an expression for the discharge through an open channel using Cherv's		
4.	Derive an expression for the discharge through an open channel using Chezy's formula.	14M	L5
	UNIT-III		
5. a)	Derive an expression for jet strikes on moving plate and also work done by the jet.	7M	L5
b)	A water jet coming out from a nozzle of 5cm diameter strikes a fixed plate with a velocity 20m/sec. Find the force exerted on the plate? When the plate is vertical.	7M	L4
	OR		
6.	A jet of water with a velocity of 30m/sec strikes on a series of blades moving with a		
	velocity of 15m/sec. The jet makes an angle of 30o to the direction of motion of the entry and leaves at an angle 120o. Draw inlet and exit velocity triangles and determine		
	as vane angles at the inlet & outlet if the water enters and leaves the vane without		
	shock. Calculate work done by the jet of water.	14M	L4
	UNIT-IV		
7. a)	Define efficiency write down the types of efficiency's.	7M	L2
b)	A Pelton wheel is designed to develop 7mw under the head of 300m when running at 550rpm. Take D/d = 10 and η_0 =0.85. Find the wheel diameter jet diameter and		
	number of jets require.	7M	L3
	OR		
8.	A turbine works under a head of 25m at 200rpm discharging 9m ³ /sec. If the overall		
	efficiency is 0.9. Find (a) power developed by the turbine, (b) specific speed of		
	the turbine and type.	14M	L4
0 0	UNIT-V	714	10
9. a)	State the main components of a centrifugal pump and describe the function of each.	7M	L2
b)	Prove that the specific speed of a pump is given by $\sqrt{2}$		
	$Ns = \frac{N\sqrt{Q}}{H^{3/4}}$		
		7M	L1
0 -	OR Drow a past skatch of hydroelectric power plant synlain function of each component	-7 R A	
0.a)	Draw a neat sketch of hydroelectric power plant explain function of each component.	7M 7M	L2
b)	Write a short notes on water hammer problem. ***END***	7M	L2

Hall Ticket Number :	R-1	9	7
Code: 19AE41T II B.Tech. II Semester Supplementary Examinations Februa Managerial Economics and Financial Accountin (Common to CE & ME) Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5	ary 2022 19 Time: 3	Hours	
	Marks	СО	Blooms Level
UNIT-I . a) What is the importance and uses of Managerial Economics to Engineers? How can these concepts be used in the			
Manufacturing Sector?	7M	1	L1
 b) Outline the objectives & uses of demand forecasting? How do you predict demand for Steel Manufacturing? 	7M	1	L4
OR • • • • • • • • • • • • • • • • • • •	1		
 a) Describe the determinants of demand, Law of demand and its exceptions. 	7M	1	L2
 b) Explain with suitable diagrams, different kinds of Elasticity of demand. 	, 7M	1	L2
UNIT-II . a) What is marginal rate of technical substitution? How does it vary from marginal rate of substitution?	t 7M	2	L1
 b) Define production. Analyse the Internal and External economies of large scale production. OR 	I 7M	2	L4
a) Explain the importance of Cobb-Douglas production function.	7M	2	L2
b) State the determinants of cost. Distinguish between Marginal cost and Opportunity cost.	7M	2	L2
UNIT-III . a) Define market. Highlight the difference between perfect and imperfect market.	t 7M	2	L2
 b) Explain the price-output determination in Monopoly in long run and short run.) 7М	2	L3
OR	714	0	1 4
 a) Outline the features, and advantages of sole proprietorship. b) Explain the Objectives, features & limitations of Co- 	7M	2	L4
operative type of organisation.	7M	2	L3

Page **1** of **2**

UNIT–IV			
7. a) Summarise the nature and scope of capital budgeting.	7M	3	L5
b) What are the different Methods of evaluating capital budgeting projects?	7M	3	L1
OR			
8. a) The initial cash outlay of a project is Rs.50, 000 and it generates cash inflows of Rs.20, 000, Rs.15, 000, Rs. 25, 000 and Rs.10, 000 in four years. Using profitability index method, appraise profitability of the proposed investment			
assuming 10% rate of discount.	14M	3	L2

UNIT-V

9. a) Determine Debt-Equity Ratio, Proprietary Ratio and Funds Proportion Ratios, with the help of following information:

	Description	Amount Rs.			
	Equity Capital	10,00,000/-			
	Profit & Loss A/C(Profit)	5,00,000/-			
	Reserves & Surplus	3,00,000/			
	Premium on Issue of Shares & Debentures				
	Debentures	30,00,000/			
	Long Term Fixed Deposits Accepted	5,00,000/			
	Long Term Bank Loans	15,00,000/			
	Provision for Dividend & Taxation	1,50,000/			
	Short Term Bank Loans	5,00,000/			
	Fixed Assets	45,75,000/	14M	3	L2
	OR				
	at are activity ratios and solvency? Gi ach ratio	ve two examp	les 8M	4	L2
	ine financial accounting. What do yo uble-entry' book keeping?	by 6M	4	L1	
uot	***END***		OW	т	L 1

10. a)

b)

Code: 19AE41T

Hall	Ticket Number :			
		R-19		
couc	II B.Tech. II Semester Supplementary Examinations February	2022		
	Numerical Methods & Probability and Statistics (Common to CE & ME)			
-		ne: 3		
		- 70 N		Diagona
		Marks	СО	Blooms Level
1. a)	Apply Nehson method to find the real root of the			
	equation $\frac{xex}{2} = 0$.	7M	CO1	L3
b)	Estimate the value of ^{[on n}] and ^{d to}) from the following data			
	$\begin{array}{c c} \hline & f(1,7) \\ \hline \\ $	714		
	1 1.5 2.2 3.1 4.6	7M	CO1	L2
2. a)	Find the root of the equation			
	method correct to three decirnal places.	7M	CO1	L1
b)	Find the prect mial $\frac{\text{quation}}{\text{be deci}}$ using Lagrange's formula and			
	hence find $f(5)$ from the following data.			
	648 704 729 792	7M	CO1	L1
	UNIT–II			
3. a)	Evaluate $\int_{e} \frac{e^x}{1+x} dx$ by usin			
	1/3 rule.	7M	CO2	L3
b)	Apply Taylor's method to find $y(0.1) = y(0.2)$ and $y(0.2)$ to five decimals from $y' = x + y, y(0) = 0$.	714		
	decimals from $y' = x + y, y(0) = 0$.	<i>i</i> ivi	CO2	L3
4. a)	Apply Runge-Kutta m PR fourth order to find			
,	approximate value of $\frac{\text{ethoc of}}{y \text{ at } x = 0}$.1, given that $\frac{dy}{dx} = 3e^{x} e^{x} + e^{x}$			
	$2^{y, y(0)} = 0$ and $h = 0.1$.	7M	CO2	L3
b)	(0) = 0 and $u = 0Find \frac{dy}{dt} = 0 1 for the following data$			
	Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at $x = 0$. 1 for the following data x = 1 $\frac{10}{x}$ 1.0 1.1 1.2 1.3 1.4 1.5 $\frac{10}{x}$ 5.691 6.213 6.932 7.535 8.214 9.234			
	5.691 6.213 6.932 7.535 8.214 9.234	7M	CO2	L1
	UNIT-III			
5. a)	X is a continuou s randor variable with probability density function given by $f(x) = \begin{cases} k, & 0 \le x < 1 \\ 2k, & 1 \le x < 2 \text{ then} \\ -kx + 6k, 2 \le x < 3 \end{cases}$			
	function given by $f(x) = \int_{2k}^{n} x_{k}, \qquad 0 \le \frac{1}{x} < 1$ 1 < x < 2 then			
L \	Find i) k , ii) mean iii) variance	7M	CO3	L1
b)	Fit a binomial distribution to the following frequency distribution			
	13 25 52 58 32 16 4	7M	CO3	L2

Page **1** of **2**

7M co3

7M _{CO3}

7M CO4

7M CO4

7M _{CO4}

7M co4

14M CO5

13

L1

14

L4

14

14

L2

6. a) A random variable *x* has the probability function

ible x	0	1	2	3	4 _	5	_6
	has 0 1	4k		$7^{\frac{1}{k}}$	8 ^{lity} .	11k	12

(i) Find the value of the k, (ii) Evaluate P(X < 1), $P(X \ge 3)$.

b) The mean and standard deviation of the marks obtained by 1000 students in an examination are respectively 34.4 and 16.5. Assuming the normality of the distribution, find the approximate number of students expected to obtain marks between 30 and 60.

UNIT-IV

- 7. a) In a sample of 600 men from a certain city, 450 are found smokers. In another sample of 900 men from another city, 450 are smokers. Do the data indicate that the cities are significantly different with respect to the habit of smoking among men?
 - b) Test the claim of a manufacturer that 95% of his 'stabilizers' confirm to ISI specifications if out of a random sample of 200 stabilizers produced by this manufacturer 18 were faulty. Use 0.05 level of significance.

OR

- 8. a) A sample of 1000 days is taken from meteorological records of a certain district and 120 of them are found to be foggy. What are the probable limits to the percentage of foggy days in the district?
 - b) In a random sample of 100 tube lights produced by company A, the mean lifetime (mlt) of tube light is 1190 hours with standard deviation of 90 hours. Also, in a random sample of 75 tube lights from company B the mean lifetime is 1230 hours with standard deviation of 120 hours. Is there a difference between the mean lifetimes of the two brands of tube lights at a significance level of 0.05?

UNIT-V

9 The average weekly losses of man-hours due to strikes in an institute before and after a disciplinary program was implemented are as follows:

Before	45	73	46	124	33	57	83	34	26	17
After	36	60	44	119	35	51	77	29	24	11

Is there reason to believe that the disciplinary program is effective at 0.05 level of significance?

- OR
- 10. Can we conclude that the two population variances are equal for the following data of post graduates passed out from a 'state' and 'private' university?

State:	8350	8260	8130	8340	8070	
Private:	7890	8140	7900	7950	7840	7920
				s ala ala ala		

14M CO5 L2

Code: 19A143T

R-19

II B.Tech. II Semester Supplementary Examinations February 2022 **Strength of Materials**

(Civil Engineering)

Time: 3 Hours

Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks) *******

			Marks	со	Blooms Level
		UNIT–I			
1.	a)	A cylinder has an internal diameter of 1.2m and a length of 2.5 m. The internal pressure in the cylinder is 1.5MPa. The longitudinal joint in the cylinder has an efficiency of 80% and the circumferential joint one of 50%. Find the minimum thickness required if the stresses are not to exceed 48 MPa in the circumferential direction and 32 MPa in the longitudinal direction.	7M	CO1	2
	b)	A thin cylindrical pressure vessel has an internal diameter of 150mm and a wall thickness of 5 mm. It is subjected to an internal pressure of 7 N/mm ² . If the cylinder is 900 mm long and $E = 200$ GPa, find the value of Poisson's ratio for the material if the			
		change in volume under this pressure is 15,500 mm ³ .	7M	CO1	2
		OR			
2.		A compound cylinder is made by shrinking a jacket on to a cylinder. For the compound cylinder, the outer and inner radii are 100mm and 60 mm, and the radius at the junction is 80 mm. Before the fluid pressure of 40 N/mm ² is applied, the radial pressure at the junction is 10 N/mm ² .Determine the final stresses in the cylinder. Also calculate the difference in the diameters of tubes before the jacket is shrunk on to the cylinder and the temperature at which this can be done. Take $E = 200$ GPa and			
		a=12X10 ⁻⁶ / ^o C.	14M	CO1	2
3.		UNIT-II A shaft has to transmit a torque of 30 kNm. The maximum shear stress is not to exceed 100 MPa and the angle of twist is not to exceed 1"/meter length. $G = 80$ GPa. Design the shaft according to the given specifications if it is a (i) solid circular shaft and (ii) hollow circular shaft of internal diameter 90% of the external diameter.	14M	CO2	2
		OR			
4.		An open coiled helical spring has 10 coils made out of a 12 mm diameter steel rod. The mean diameter of the coils is 80 mmm and the helix angle 150. Find the deflection under an axial load of 250 kN. What are the maximum intensities of direct and shear stresses induced in the section of the wire? If the above axial load is replaced by an axial torque of 60 N-m, determine the axial deflection and the angle of rotation about the axis of the coil. G = 80 MPa and E = 204 GPa.	14M	CO2	1
5.		A rectangular column of wood, 3 m long, carries a load of 300 kN. Determine whether or not a section of size 200 mm x 150 mm will be able to carry this load if a factor of safety of 3 is to be used, assuming Euler's formula is applicable. $E = 12.5$ GPa and the permissible stress is 12 MPa. If this section will not be able to carry this load,			
		design a square section to do so.	14M	CO3	3
		OR			
6.	a) b)	A metal column of external diameter 300 mm and thickness 20 mm carries a load of 400 kN at an eccentricity of 50 mm. Determine the maximum and minimum stresses in the column if its length is 5 m, and both ends of the column are fixed. $E = 95$ GPa A steel column of length 6 m, external diameter 200 mm and thickness 10mm carries	7M	CO3	2
	~,	a load at an eccentricity of 30 mm. Find the maximum value of the load if the permissible stress is limited to 150 MPa. Both ends of the column are hinged. $E=200$ GPa.	7M	CO3	2

7M

7M

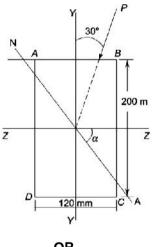
CO4

CO4


3

2

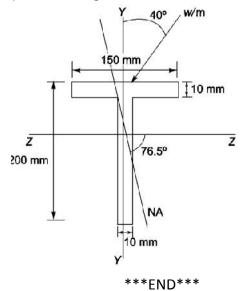
2


7. A short column of rectangular section (Fig.01) is constructed of a material with maximum permissible compressive stress 90 N/mm2 and tensile stress 25 N/mm2. If the compressive load is 1500 kN, at what eccentricity can it be applied along the two principal axes? If the load is increased to 3000 kN, what is the permissible eccentricity along the principal axes?

UNIT-IV

- 8. a) A short rod is bent in the form of an arc such that the central deflection is about 15 mm. If the maximum permissible stress is 150MPa, find the proportionate maximum load it can carry as a compression member compared to the same rod had it been straight. The rod is square in section of side 15 mm.
 - A steel plate of dimensions 200 x 25 mm carries an eccentric tensile force of 500 kN. Find the maximum and minimum stresses in the section.

9. A rectangular section of dimensions 120x 200mm is used as a beam on a 3 m span. If the beam is loaded by a concentrated load at the centre at 30^o to the vertical as shown in Fig. 2, find the maximum value of the load 'P' if the maximum bending stress is not to exceed 12MPa.



14M CO5

3

10. The T-section shown (Fig.3) is used as a simply supported beam on a span of 6 m (UNIFORMLY DISTRIBUTED LOAD). Find the maximum value of w if the permissible stress in the material is 120 MPa. The plane of loading is inclined at an angle of 40" to the vertical plane and passes through the shear center.

14M CO5 3

	F	Hall Ticket Number :												_	10	
	Co	ode: 19A141T												K	-19	
		ll B.Tech. II Ser	nest	er S	upp	olem	nent	ary	Exai	mino	atio	ns Fe	ebruc	ary 202	2	
			Bui	ildir	-		-	-	Envi		me	nt				
		lax. Marks: 70			((Civil	Eng	inee	ring)				Time:	2 110	
		nswer any five full que	estion	is by	cho	osing	g one	e qu	estio	n fro	meo	ach u	unit (5			
		, , ,		,			*****						ţ			
				ŗ				_						Marks	со	Blooms Level
	-)					JNIT-										
1.	a)	What is the importanc laws?	e of o	pen	spac	e req	uiren	nents	acco	ording	g to b	ulidir	ng bye∙	- 7M	CO1	L2
	b)	Explain the importanc	e of h	neiah	t of b	uildir	nas a	ccor	dina t	o bui	Idina	bve-	laws?	7M	CO1	L2
	,					OR	. <u>.</u>					j			001	
2.	a)	Write classification of	buildi	ings?	? Also	o exp	lain a	any th	nree t	ypes	of b	uildin	gs?	7M	CO1	L2
	b)	Write short notes on:	forlia	hting		vont	ilatia	n								
		(a) Building bye-laws(b) Building bye-laws	•	-		vent	liatio	n.						7M	CO1	L2
				[NIT-	-11									
3.	a)	Why do you need mor							•		ns or	bed r	ooms?			
	L.)	Justify your answer w					-	-				-		7M	CO2	L2
	b)	What is meant by as importance?	spect	, pro	spec	t, cir	culat	ion a	and g	group	ing?	Ехр	iain its	з 7М	CO2	L2
						OR									002	
4.	a)	Write the minimum sta	andar	ds fo	or var	ious	parts	ofb	uildin	gs ar	nd ex	plain	?	7M	CO2	L2
	b)	What are the factors					•		er p	rior t	o pla	annin	g of a			
		residential building? E	xplai	n one				tail						7M	CO2	L2
5.	a)	Write the importance	and n			NIT- n nla		 nofii	ndust	rial h	uildir	nas?		7M	CO3	L2
0.	b)	Write the importance			-	•		-				•		7M	CO3	L2 L2
	- /				,	OR		5				-			000	
6.	a)	Write the importance			-	•		-		•				7M	CO3	L2
	b)	Describe the importar of a educational institu	•		ents	and	facilit	ties to	o be l	orovi	ded i	n the	layou	t 7M	000	L2
			utions	». [NIT–	IV	7						7 111	CO3	LZ
7.	a)	Differentiate clearly be	etwee	n PE				netwo	ork m	etho	ds.			4M	CO4	L2
	b)	Define the following:-														
		(i) Activity. (ii) Arro	w.	(iii)	Interf	•	float	t. (i	v) Op	timu	m tin	ne es	timate	10M	CO4	L2
8.	a)	Draw the diagrams	showi	ina a	activit	OR v ori	ente	d ne	tw∩rk	and		o he	rientec	4		
0.	u)	network to the mass of		•		-			work				nontoc	6M	CO4	L4
	b)	Define the following:														
		(i) Slack time. (ii) Inte	erferi	-			ackw	ard p	ass.	(iv)	L.F.	Τ.	8M	CO4	L2
9.		Write short notes on:			U	NIT-	-V									
э.		(a) Temperature and I	Humio	dity e	extrer	nes	(b)	air q	uality	and	quai	ntity		14M	CO5	L2
				-		OR	. ,	•	,		-	-				
10.		Write short notes on: (a) Benefits of Green D)esian) (h)	Glob	al wa	rmine	n (c)	Therr	nal C	omfo	ort sta	Indards	s 14M	CO5	L2
			Corgi	. ()	2100		-	D***			Chine				500	