	Hall Ticket Number :	R-19	>			
(Code: 19A142T		,			
II B.Tech. II Semester Supplementary Examinations April 2023						
	Concrete Technology					
	(Civil Engineering)		المراسم			
	Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x14 :	ne:3+ = 70 м				
		7014	and j			
	UNIT–I	Marks	CO			
1.	Enumerate different properties of aggregates and testing procedures for any					
	three of those properties.	14M	CO1			
	OR					
2.	Explain the factors that promote alkali aggregate reaction.	14M	CO1			
	UNIT–II					
3.	Discuss the various factors that affect workability of concrete.	14M	CO2			
	OR					
4.	Describe the rebound hammer test procedure on concrete.	14M	CO2			
	UNIT–III					
5.	Explain the relation between time and creep and nature of creep	14M	CO3			
	OR					
6.	Discuss effects of improper curing of concrete and also explain which					
	method of curing gives the best result.	14M	CO3			
_			001			
7.	Discuss briefly about IS 10262-2009 code method of concrete mix proportioning?	14M	CO4			
~	OR					
8.	Discuss different factors to be considered in the choice of mix proportions.	14M	CO4			
~			005			
9.	Discuss the factors affecting the properties of the fiber reinforced concrete.	14M	CO5			
~	OR		00-			
0.	Discuss light weight concretes. Write advantages and disadvantages	14M	CO5			

	Hall Ticket Number :	-19		
С	Code: 19A144T II B.Tech. II Semester Supplementary Examinations April 2023			
	Hydraulics Engineering			
	(Civil Engineering)			
		3 Hou	Jrs	
/	Answer any five full questions by choosing one question from each unit (5x14 = 70 ********) Mark	s)	
		Marks	со	
•	Oil with a free stream velocity of 2 m/s flows over a thin plate 2 m wide and 2m long. Calculate the boundary layer thickness and the shear stress at the			
	trailing end point and determine the total surface resistance of the plate. Take			
	specific gravity as 0.86 and kinematic viscosity as 10^{-5} m ² /s			
		14M	1	
	OR Eveloin chart des réces and lift forme	4 4 5 4		
•	Explain about drag force and lift force.	14M	1	
	UNIT–II Describe the classification of flow in channels	14M	2	
•	OR	1-1101	2	
	A sluice gate discharges water into a horizontal rectangular channel with			
-	velocity of 10 m/s and depth of flow of 1 m. Determine the depth of flow after			
	the jump and consequent loss in total head.	14M	2	
	UNIT-III			
•	Derive the force exerted by the jet on stationary inclined flat plate	14M	3	
	OR			
•	A Jet of water having velocity of 15 m/s, strikes a curved vane which is moving with a velocity of 5 m/s in the same direction as that of the jet at inlet. The vane			
	is so shaped that the jet is deflected through 135°. The diameter of the jet is			
	100 mm. Assuming the vane to be smooth, find the force exerted by the jet on			
	the vane in the direction of the motion.	14M	3	
	UNIT-IV Define the heads and efficiencies of a turbine	14M	4	
•	OR	1411	4	
	A Pelton wheel has a mean bucket speed of 10 m/s with a jet of water flowing			
•	at the rate of 700 l/s under a head of 30 m. The buckets deflect the jet through			
	an angle of 160°. Calculate the power given by water to the runner. Assume			
	coefficient of velocity as 0.98.	14M	4	
	UNIT-V	1 4 4 4 4	А	
•	Explain about main parts of a centrifugal pump with a neat sketch	14M	4	
	OR Derive the equation for the work done by the centrifugal nump	14M	4	
	Derive the equation for the work done by the centrifugal pump	141VI	4	

Important Note: 1. On completing your answers. Compulsorily draw diagonal cross line on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and/or equations written eg. 42+8=50, will be treated as malpractice.

	Hall Ticket Number :
	Code: 19AE41T
	Il B.Tech. II Semester Supplementary Examinations April 2023
	Managerial Economics and Financial Analysis
	(Common to CE and ME) Max. Marks: 70 Time: 3 Hours
	Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)
	Marks CO BL
1.	Deliberate the importance and scope of Managerial Economics? 14M CO1 L2 OR
2.	Explain the following a) Types of Demand b) Determinants of Demand 14M UNIT-II
3.	Define Cost. Explain the different cost concepts used in the process of Cost Analysis 14M CO2 L2 OR
4.	Outline the Cobb-Douglas production function. What are the properties of this function? 14M CO2 L4
5.	Explain the following a) Partnership Deed b) Formation of Company 14M CO3 L2
6.	OR Define Company, what are the characteristics of Company and Explain the contrast 14M between public company and private company?
7.	UNIT-IV Compare merits & demerits of Pay Back Period & Accounting Rate of Return Methods of capital budgeting.
8.	Vear Machine A Machine B 1 75,000 5 50,000 2 1,00,000 50,000 14M CO4 L3
9.	Calculate NPV @10% UNIT-V Define accounting. What do you understand by Double Entry System of book- keeping? Explain OR
10.	Journalize the following transactions and prepare a cash ledger. Jan 1 st 2021(Jan1st, Jan2nd.) 1. Ram invests Rs. 10, 000 in cash. 2. He bought goods worth Rs. 2000 from shyam. 3. He bought a machine for Rs. 5000 from Lakshman on account. 4. He paid to Lakshman Rs. 2000 5. He sold goods for cash Rs.3000 6. He sold goods to A on account Rs. 4000 7. He paid to Shyam Rs. 1000 8. He received amount from A Rs. 2000 ***

~		R-19	•
C	ode: 19AC41T II B.Tech. II Semester Supplementary Examinations April 2023	 २	
	Numerical Methods & Probability and Statistics	5	
	(Common to CE & ME)		
	Nax. Marks: 70 Time	e:3⊦	
A	nswer any five full questions by choosing one question from each unit (5x14 =	70 M	arks)
	I	Marks	со
	UNIT–I		
•	Find a real root of the equation $x^3 - 2x - 5 = 0$ by the method of false position		004
	·	14M	CO1
	OR Using Lagrange's formula, calculate f(9)from the following table:		
	x 5 7 11 13 17		
		14M	CO1
	UNIT-II	1-+101	001
	Evaluate $\int_{0}^{6} \frac{dx}{1+x^2}$ by using		
		14M	CO2
	OR		
	$dy y^2 - x^2$		
	Using Runge-Kutta method of fourth order, solve $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$ with y(0)=1 at		
		14M	CO2
	UNIT–III		
•	A random variable X has the following Probability function:		
	X 0 1 2 3 4 5 6 7		
	$P(x) 0 K 2K 2K 3K K^2 2K^2 7K^2 + K$		
	(i) Determine K (ii) Mean (iii) Variance and		
		14M	CO3
	OR		
•	If the masses of 300 students are normally distributed with mean 68 kgs and standard deviation 3 kgs, how many students have masses		
	(i) Greater than 72 kg (ii) less than or equal to 64 kg		
	(iii) Between 65kg and 71 kg inclusive.	14M	CO3
	UNIT–IV		
•	Experience had shown that 20% of a manufactured product is of the top		
	quality. In one day's production of 400 articles only 50 are of top quality. Test the hypothesis at 0.05 levels.	14M	CO4
	OR		004
	In two large populations, there are 30%, and 25% respectively of fair haired		
	people. Is this difference likely to be hidden in samples of 1200 and 900		
		14M	CO4
	UNIT-V		
	A random sample of six steel beams has a mean compressive strength of 58,392 pounds per square inch with a standard deviation of 648 pounds per		
	square inch. Use this information and the level of significance =0.05 to test		
	whether the true average compressive strength of the steel from which this		
		14M	CO5
	OR		
	In one sample of 8 observations from a normal population, the sum of the		
	squares of deviations of the sample values from the sample mean is 84.4 and in another sample of 10 observations it was 102.6. Test at 5% level		

	Hall	Ticket Number :			
		R-1	9		
C	Juc	II B.Tech. II Semester Supplementary Examinations April 2023		_	
		Strength of Materials			
	Mc	(Civil Engineering) Time:	3 Hou	rs	
	Ans	swer any five full questions by choosing one question from each unit (5x14 = 70) Marks	5)	
			Marks	со	BL
1.		UNIT–I A Spherical shell of internal diameter 25cm, wall thickness 6cm is subjected to			
		an internal pressure of 850N/mm ² .Calculate the values of maximum and			
		minimum circumferential stresses and radial stresses. OR	14M	1	2
2.	a)				
	b)	cylindrical shell subjected to internal pressure	7M	1	4
	b)	A compound thick cylinder is formed by shrinking a hollow cylinder of 150 mm External Diameter over another hollow cylinder of 130 mm Internal Diameter.			
)		The common diameter after shrinking is 140 mm. If the radial pressure at the			
		junction is 120 N/mm ² and E = 200 kN/mm ² , find the original difference in diameter of the two cylindrical shells before shrinking.	7M	1	2
		UNIT-II			
. 3.		A weight of 250N is dropped on to a helical spring made of 20 mm wire, closely coiled to a mean diameter of 180mm with 25 coils. Determine the			
		height of drop if the instantaneous compression is 70mm. $C= 90 \text{ GN/m}^2$.	14M	2	4
		OR			
4.	a)	Derive the elongation of close coiled helical spring subjected to axial pull of W, with a diameter d, number of coils n and modulus of rigidity c.	7M	2	4
	b)	A close coiled helical spring is to be made out of 6mm diameter wire that is			
		3.0m long so that it deflects by 24mm under an axial load of 60KN. Determine the mean diameter of the coils. Take C=88GN/m ²	7M		4
			7 101		т
5.	a)	The connecting rod (CR) of a small petrol engine is made up of a mild steel			
		tubular section 2.5 cm OD and 1 cm ID. Calculate the safe load on the CR if it is designed as a column with both ends pinned. Assume that the length of the			
)		CR is 60 cm. Safe buckling stress is 8 kN/cm ² . Factor of safety is 6.	10M	3	5
	b)	Define: Euler's stress, slenderness ratio, equivalent length, buckling factor. OR	4M	3	2
· 6.		Derive the expression for maximum bending moment for a long column			
		subjected to eccentric loading.	14M	3	3
7.	a)	Illustrate the bending stress and net stress for a trapezoidal section dams with			
		vertical water face?	7M	4	2
	b)	The theoretical profile of concrete straight gravity dam is a right angled triangle with the water face vertical. The depth of water retained is the same as the			
		height of dam. Show that the resultant thrust to act with in the middle third, the			
		base width should be H where H is the vertical height of the dam and s is the specific gravity of the concrete dam.	7M	4	4
		OR	7 101	т	т
8.		A short column of external diameter 45 cm and internal diameter 25 cm carries an eccentric load of 90 kN. Find the greatest eccentricity which the load can			
		have without producing tension on the cross-section	14M	4	4
		UNIT–V			
9.		Write the assumptions made for the analysis of beam subjected to unsymmetrical bending. Determine the stresses due to unsymmetrical bending and deflection?	14M	5	2
	-	OR			
10.	a)	Define flexural rigidity, section modulus, bending axis of a beam and shear centre of a section.	7M	5	2
	b)	Determine the shear centre for a channel section having dimensions of 15 cm		-	_
		X 2cm for web and 8 cm X 2 cm for each flange	7M	5	3