Hall Ticket Number :							
Code: 19A144T						R-19	

II B.Tech. II Semester Supplementary Examinations July/August 2022

Hydraulics Engineering

(Civil Engineering)

Max. Marks: 70 Time: 3 Hours Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

				5.
	UNIT-I	Marks	CO	Blooms Level
1. a)	Define laminar boundary layer, turbulent boundary layer	6M	1	1
b)	What is meant by laminar sub-layer and boundary layer thickness (δ)	8M	1	1
	OR			
2.	Derive equation for displacement thickness (δ^*)	14M	1	1
	UNIT-II			
3.	For a trapezoidal channel with bottom width 40 m and side slopes 2H:1V			
	Manning's N is 0.015 and bottom slope is 0.0002. If it carries 60 m ³ /s, Determine the normal depth.			
	Determine the normal depth.	14M	2	2
	OR			
4. a)	Explain the terms specific energy and critical depth.	6M	2	1
b)	Find the specific energy of flowing water through a rectangular channel of			
	width 5 m when the discharge is 10 m ³ /s and depth of water is 3 m.	8M	2	2
_	UNIT-III			
5.	Derive the force exerted by the jet on stationary vertical plate	14M	3	2
•	OR			
6.	A Jet of water of diameter 50 mm moving with velocity of 40 m/s, strikes a curved fixed symmetrical plate at the centre. Find the force exerted by the			
	jet of water in the direction of the jet, if the jet is deflected through an angle			
	of 120° at the outlet of the curved plate.	14M	3	2
	UNIT-IV			
7. a)	Explain about classification of hydraulic turbines	4M	4	1
b)	Explain about main parts of the Pelton turbine with a neat sketch	10M	4	1
	OR			
8. a)	Explain specific speed	4M	4	1
b)	A turbine develops 9000 KW when running at a speed of 140 r.p.m. and	4014	4	0
	under a head of 30 m. Determine the specific speed of turbine.	10M	4	2
9.	UNIT-V A centrifugal pump is to discharge 0.118 m3/s at a speed of 1450 r.p.m.			
J.	against a head of 25 m. The impeller diameter is 250 mm, its width at outlet			
	is 50 mm and manometric efficiency is 75%. Determine the vane angle t the			2
	outer periphery of the impeller	14M	4	
	OR			
10. a)	What is the difference between single stage and multi stage centrifugal			1
1.3	pumps	6M	4	4
b)	Explain about pumps in series and parallel ***	8M	4	1

						1		1			
Hall Ticke	t Number	:						Г	D 1	0]
Code: 19A	_							L	R-1		
II B.T	ech. II Se Nun		Metho		babili	ity o			ust 202	2	
Max. Ma Answer ar	rks: 70 ny five full (question	•		questic	•	om each	ı unit (5x	Time: 3 14 = 70 <i>N</i>		
			,						Marks	СО	Blooms Level
		4/2-2)	l	NIT-I							
	ne value of					ilable					
χ f(γ)	20 354	25 332	30 291	35 260	40 231		45 204		14M	CO1	L2
f(x)	334	332)R	231		204		14101	COT	LZ
Find a pos method.	sitive root o	of $x^3 - x$	-1 = 0 cor		o decim	al pl	aces by	Bisectior	14M	CO1	L3
Given that			UN	111-11							
х у 7	1.0 1.1 7.989 8.4	103 8.7	781 9.12	1.4 29 9.45	1.5 1 9.75	50	1.6 10.031				
find $\frac{dy}{dx}$ an	$d\frac{d^2y}{dx^2}$ at (a)) x=1.1 (b	o) x=1.6						14M	CO2	L1
			0	R							
	lor series n	_			values of	of y(I.1) and	y(1.2) fo	ſ		
the differer	ntial equatio	on $\frac{dy}{dx} = x$		= 0. II T–III					14M	CO2	L3
numbers i.	are thrown, .e., X (a, b) and varianc	= max (a, b). Find distribution	the proba					l	CO3	L1
	n variable h 2), find (i) I) P(<u>4), (ii</u>			p(1-	<x<4).< td=""><td></td><td>14M</td><td>CO3</td><td>L3</td></x<4).<>		14M	CO3	L3
	s thrown 9 with the hy		es and of that the di	these 32	•	ded	a 3 or 4	4. Is this		CO4	L1
The mean	of 400 items of the sa with mea	mple is	40. Test Also calcu	whether t	the sam	ple ł	nas com	e from a	1)	CO4	L3
Second gr	f 5 patients roup of 7 42, 56, 64	patients	with med from the	licine A w same hos	spital tre	ated	with me	edicine E	3		

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

. . .

OR

The number of automobiles accidents per week in a certain community are as follows: 12,8,20,2,14,10,15,6,9,4. Are these frequencies in agreement with the

belief that accident conditions were the same during this 10 week period?

medicine B increases the weight significantly?

14M CO5

14M CO5

L1

L1

Hall Ticket Number :							
	J.					'	R-19

Code: 19A143T

1.

II B.Tech. II Semester Supplementary Examinations July/August 2022

Strenath of Materials

(Civil Engineering)

Max. Marks: 70 Time: 3 Hours Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)**Blooms** Marks CO Level UNIT-I Relation between thin and thick cylindrical shells. Illustrate the various stresses acting in thin cylindrical shell? 14M 1 OR A Spherical shell of 1m diameter is subjected to an internal pressure of 1.2N/mm² .Taking the maximum allowable stress as 100 N/mm². calculate the necessary thickness of the plate. Take joint efficiency at 75% 7M 1 Find an expression for the change in the volume of a thin cylindrical shell subjected to internal fluid pressure. 7M 1 UNIT-II 3. a) What are the assumptions made in the theory of pure torsion? 4M 2 b) Derive the basic torsion equation $T/J = fs/R = c\theta/I$. 10M 2

A leaf spring carries a central load of 2.5 KN. The leaf spring is to be made of 10 steel plates 6 cm wide and 5 mm thick. If the bending stress is limited to 100 N/mm², determine length of the spring and deflection at the centre of the spring. Take $E=2\times105 \text{ N/mm}^2$.

UNIT-III

Derive Rankine's formula applied to medium columns. 5. a) Determine the crippling load for a T-section of dimensions 10cm X 10cm X 2cm and length 5m, when it is used as a strut with both ends fixed. Take

E=2X105 N/mm².

6. Derive Secant formula. Hence deduce Perry's formula for eccentrically loaded columns.

OR

UNIT-IV

7. a) Find an expression for the maximum and minimum stresses when a rectangular column is subjected to a load, which is eccentric to Y-Y axis

What is Core of a section? Derive the expression for a rectangular hollow b) section

OR

A short column of rectangular cross section 25 cm X 20 cm carries a load of 8. 400 kN at a point 5 cm from the longer side and 10 cm from the shorter side. Determine the maximum tensile and compressive stresses in the column.

UNIT-V

A beam of rectangular section 100 mm wide and 150mm deep is subjected 9. to bending moment of 15 KNm. The trace of the plane of loading is inclined at 450 to the Y-Y axis of the section. Locate the neutral axis of the section and calculate maximum bending stress induced in the section

OR

10. Find the centroidal principal moments of inertia of an I-section 50mmX4mm top flange, 70 mm X 4 mm bottom flange, and 60 mm X 4 mm web. Also find the direction of principal axes of inertia.

3

3

4

2

2

2

14M

7M

7M

14M

14M

14M

4 5

5

3

5

Hall Ticket Number :						D 10	
Code: 19A141T						R-19	

II B.Tech. II Semester Supplementary Examinations July/August 2022

Building Planning & Environment

(Civil Engineering)

		Marks	СО	Blooms Level
	UNIT-I			
1.	Recall the objectives of Building Bye-Laws.	14M	1	L2
	OR			
2.	Write a short note on Carpet area, plinth area and Built up area.	14M	1	L2
3.	UNIT-II Recall the minimum standards of I. Habitatble room			
	II. Kitchen &			
	III. Bath room and water closet	14M	2	L2
	OR			
4.	Write down the factors to be considered while selecting suitable site for a residential building.	14M	2	L2
5.	UNIT-III Elaborate various factors to be considered while planning office bulding.	14M	3	L2
O.	OR			
6.	Elaborate various factors to be considered while planning hotel and motel.	14M	3	L2
7.	Paraphrase various steps involved in planning of a construction projects. OR	14M	4	L2
8.	A project consists of the following activities: Activity: 10-20,10-30,20-40,30-40,20-50,40-50 Duration(Weeks): 13,12,2,8.15,2			
	Draw the network diagram. Calculate total and free floats for the activities. Mark the critical path.	14M	4	L3
9.	UNIT-V Elaborate various thermal comfort standards. OR	14M	5	L2
10.	Recall the impact of buildings on ozone depletion.	14M	5	L2

Hall licket Number:	
Hall Ticket Number :	

Code: 19A142T

II B.Tech. II Semester Supplementary Examinations July/August 2022

Concrete Technology

(Civil Engineering)

Max. Marks: 70 Time: 3 Hours

Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

		Marks	СО	Blooms Level
	UNIT-I			
1.	Illustrate how hydration happens in cement with suitable chemical reactions.	14M	CO1	L2
	OR			
2.	Distinguish between well graded and gap graded aggregates.	14M	CO1	L2
	UNIT-II			
3.	Discuss compressive strength test of concrete?	14M	CO2	L2
	OR			
4.	Discuss the factors affecting strength of concrete.	14M	CO2	L2
	UNIT-III			
5.	Define shrinkage and explain different types of shrinkages in concrete.	14M	CO3	L1
	OR			
6.	Explain modulus of elasticity, Poisson's ratio, dynamic modulus of elasticity			
	of concrete.	14M	CO3	L1
7	UNIT-IV	4.45.4	004	1.4
7.	Describe quality control of concrete and statistical methods?	14IVI	CO4	L1
0	OR	4.48.4	004	1.4
8.	Discuss briefly about ACI code method of concrete mix proportioning?	14IVI	CO4	L1
9.	UNIT-V Discuss high density concrete. Write adventages and disadventages	1 1 1 1	COE	L2
ð.	Discuss high density concrete. Write advantages and disadvantages OR	1 4 IVI	CO5	LZ
10.		1 1 1 1	COF	L2
10.	Discuss no fines concrete and its applications	I 4IVI	CO5	L2
