Hall Ticket Number :						R-19	
Code: 19A141T						K-17	

II B.Tech. II Semester Supplementary Examinations November 2023

Building Planning & Environment (Civil Engineering) Max. Marks: 70 Time: 3 Hours Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)BL CO UNIT-I 1. Elaborate about municipal bye laws and its purpose? 14M 1 L2 2. Brief explain about the lighting and Ventilation. 14M 1 L2 UNIT-II 3. Write down the functional requirements of the following elements of a residential building. Ι. Living room II. Kitchen & III. Bath and Water Closet 14M 2 L2 OR Describe the importance of grouping. 14M 2 L2 **UNIT-III** 5. List various types of recreation buildings. 14M 3 L2 OR 6. Elaborate various factors to be considered while planning office building. 14M 3 L2 UNIT-IV 7. Elaborate the importance of float and critical path. 14M 4 L2 OR 8. Recall the objectives of network analysis. 14M 4 L2 **UNIT-V** Demonstrate the term energy conservation. 14M 5 L2

9.

Elaborate various thermal comfort standards.

14M 5 L2

Hall Ticket Number :											_	_
Code: 19A144T									R-19			

0.	II B.Tech. II Semester Supplementary Examinations Novembe Hydraulics Engineering	r 2023		
	(Civil Engineering)			
	Tingles: 70 Max. Marks: 70 nswer any five full questions by choosing one question from each unit (5x14 ***********************************	me: 3 Ho = 70 Mc		
	UNIT-I	Marks	СО	BL
1.	Find the momentum thickness for the velocity distribution in the boundary			
•	layer given by $u/U = 2(y/\delta)-(y/\delta)^2$	14M	1	2
	OR			
2. a)	Define laminar boundary layer, turbulent boundary layer	6M	1	1
b)	What is meant by laminar sub-layer and boundary layer thickness (δ)	8M	1	1
	UNIT-II			
3.	Find the velocity of flow and rte of flow of water through a rectangular channel of 6 m wide and 3 m deep, when it is running full. The channel is			
	having bed slope s 1 in 2000. Take Chezy's constant C = 55.	14M	2	2
	OR			
4. a		6M	2	1
•	·	OIVI	_	•
b)	The depth of flow of water at a certain section of a rectangular channel of 4 m wide, is 0.5 m. This discharge through the channel is 16 m ³ /s. If a hydraulic jump takes place on the downstream side, find the depth of the flow after the jump.	8M	2	2
	UNIT-III			
5.	Water is flowing through a pipe at the end of which nozzle is fitted. The diameter of the nozzle is 100 mm and head of water at the centre nozzle is			
	100 m. Find the force exerted by the jet of water on a fixed vertical plate.	4 4 1 1 4	_	0
	The coefficient velocity is given as 0.95.	14M	3	2
	OR			
6.	Derive the force on flat vertical plate moving in the direction of jet	14M	3	2
	UNIT-IV			
7.	Explain about main parts of the Kaplan turbine with a neat sketch	14M	4	1
	OR			
8.	Explain about characteristic curves of turbines	14M	4	1
	UNIT-V			
9.	A centrifugal pump delivers water against a net head of 14.5 m and design speed of 1000 r.p.m. The vanes re curved back to an angle of 30° with the			
	periphery. The impeller diameter is 300 mm and outlet width is 50 mm.			
	Determine the discharge of the pump if manometric efficiency is 95%.	14M	4	2
	OR			

10. Explain about classification of hydro power plants 14M 4

1