Hall Ticket Number :						

Code: 19A144T

R-19

II B.Tech. II Semester Supplementary Examinations December 2022

Hydraulics Engineering (Civil Engineering)

		(Civil Engineering)			
			ime: 3 H		
	/	Answer any five full questions by choosing one question from each unit (5x1) ***********************************	4 = 70 M	arks)	
			Marks	СО	BL
		UNIT-I			
1.		Find the displacement thickness, the momentum thickness and energy			
		thickness for the velocity distribution in the boundary layer is given as u/U=			
		$2(y/\delta)-(y/\delta)^2$	14M	1	2
		OR			
2.		Derive equation for Momentum thickness ()	14M	1	1
		UNIT-II			
3.	a)	Prove that Chezy's formula Q=AC\(\sqrt{RS}\) where C=Chezy's Constant,			
	,	R=Hydraulic Mean Radius, S is the slope, A is the area of cross section	6M	2	2
	b)	Prove that for a most economical trapezoidal section (b+2ny)/2=y (n²+1)	8M	2	2
	,	OR			
4.	a)	Explain about hydraulic jump	4M	2	1
	b)	The depth of flow of water at a certain section of a rectangular channel of 4			
	,	m wide, is 0.5 m. This discharge through the channel is 16 m ³ /s. If a			
		hydraulic jump takes place on the downstream side, find the depth of the			
		flow after the jump.	10M	2	2
		UNIT-III			
5.		Find the force exerted by a jet of water of diameter 75 mm on stationary flat			
		plate, when the jet strikes the plate normally with velocity of 20 m/s.	14M	3	2
		OR			
6.		A jet of water of diameter 10 cm strikes a flat plate normally with a velocity			
		of 15 m/s. The plate is moving with a velocity of 6 m/s in the direction of jet and away from the jet. Find the force exerted by the jet on the plate.	1 4 1 1	3	2
			14M	3	2
7	-1	UNIT-IV	48.4	4	4
7.	a)	Define turbines	4M	4	1
	b)	Draw layout of a hydroelectric power plant	10M	4	2
		OR			
8.		A Kaplan turbine develops 24647.6 KW power at an average head of 39 m. Assuming a speed ratio of 2, flow ratio 0.6, diameter of the boss equal to			
		0.35 times the diameter of the runner and overall efficiency of 90%,			
		calculate the diameter of the turbine.	14M	4	2
		UNIT-V			
9.		Define the heads and efficiencies of a centrifugal pump	14M	4	1
		OR			
10.		Explain about classification of hydro power plants	14M	4	1
		***		-	-

Hall Ticket Number :							
O I 404 F 44 F						R-19	

Code: 19AE41T

II B.Tech. II Semester Supplementary Examinations December 2022

Managerial Economics and Financial Accounting

(Common to CE & ME)

Max. Marks: 70 Time: 3 Hours Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

						Marks	СО	Blooms Level
			UI	NIT–I				
1.	Delib	erate the im	portance and scope of	of Managerial Economi	cs?	14M	CO1	L2
			·)R				
2.	Dete	rmine the c	oncept of cross elasti	city of demand. Discus	ss the method to)		
		sure such el	•	•			CO1	L3
			UN	NIT-II				
3.	Defin	e Cost Exi		t concepts used in the	process of Cos	t		
0.	Analy		Jam the amorem coo	t concepte acca in the	process or each		CO2	L2
	,	,	C)R				
4.	Discu	uss the follo	wina					
) Economie	•			7M		L2
	b)) Least Cos	st Combination of Inpu	ıts		7M	CO2	L2
			UN	IIT–III				
5.	Desc	ribe the fea	itures, advantages an	d disadvantages of So	ole trader form o	f		L2
	Orga	nization?		· ·		14M	CO3	
			C)R				
6.	Briefl	y discuss th	ne price-output determ	ination in monopolistic	competition.	14M	CO3	L2
				IIT–IV				
7.	Discu	uss the follo	wing					
			Capital & Its Affecting	Factors		7M	CO4	L2
		_	nod advantages and d			7M	CO4	L2
			C)R				
8.	Calcu	ulate Net Pr	esent Value (NPV) an	d Profitability Index (PI) for both the			
	proje	cts.						
		V	Project-A Cash in	Project-B Cash in	DV@400/			
		Years	flows	flows	PV@10%			
		1	2,50,000	3,50,000	0,909			
		3	1,80,000	1,50,000	0,826			
		<u> </u>	1,20,000	1,80,000	0,751			

Project-A Cash in	Project-B Cash in	
flows	flows	PV@10%
2,50,000	3,50,000	0,909
1,80,000	1,50,000	0,826
1,20,000	1,80,000	0,751
1,10,000	80,000	0.683
75,000	60,000	0.621
50,000	40,000	0.621
	2,50,000 1,80,000 1,20,000 1,10,000 75,000	flows flows 2,50,000 3,50,000 1,80,000 1,50,000 1,20,000 1,80,000 1,10,000 80,000 75,000 60,000

Initial investment for the project-A; Rs.4,80,000 and project-B; Rs.6,00,000 and cost of capital assumed to be 10%.

14M CO4 L3

L2

UNIT-V

Briefly discuss various types of Accounts (Golden Rules of Accounting) with 9. 14M CO5 examples?

OR

10. Define Capital Budgeting. Explain the Nature, Scope and Features of Capital 14M CO5 L2 **Budgeting?**

Hall Ticket Number: R-19 Code: 19AC41T II B.Tech. II Semester Supplementary Examinations December 2022 **Numerical Methods & Probability and Statistics** (Common to CE & ME) Max. Marks: 70 Time: 3 Hours Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)Marks CO UNIT-I Find a root of the equation $x^3 - 4x - 9 = 0$ using the Bisection method correct to three decimal places. 14M 3 **OR** Evaluate the following(correct to four decimal places) by Newton Raphson method: 14M 2 1 UNIT-II Given that 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.000 1.025 1.049 1.072 1.095 1.118 1.140 find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at (a) x=1.05 (b) x=1.25 14M 2 Evaluate y(0.2) and y(0.4) correct to four decimal places by Taylor's series method if y(x) satisfies $\frac{dy}{dx} = 1 - 2xy$ and y(0) = 0. 2 14M 2 **UNIT-III** A continuous random variable has the Probability density function $f(x) = \begin{cases} k x e^{-\frac{1}{2}x}, & \text{for } x \ge 0, \\ 0, & \text{otherwise} \end{cases}$. Determine (i) k (ii) Mean (iii) Variance 14M 3 1 Out of 800 families with 5 children each, how many would you expect to have (a) 3 boys, (b) 5 girls, (c) either 2 or 3 boys (d) at least one boy? (Assume equal probabilities for boys and girls.) 14M 3 2 UNIT-IV In a big city 325 men out of 600 men were found to be smokers. Does this information support the conclusion that the majority of men in this city are smokers? (Assume that the number of smokers and non-smokers are equal in the city) 14M OR An ambulance service claims that it takes on the average less than 10 minutes to reach its destination in emergency calls. A Sample of 36 calls has a mean of 11 minutes and the variance of 16 minutes. Test the claim at 0.05 level of significance. 14M UNIT-V The average breaking strength of the steel rods is specified to be 18.5 thousand

1.

2.

3.

4.

5.

6.

7.

8.

9. The average breaking strength of the steel rods is specified to be 18.5 thousand pounds .To test this sample of 14 rods were tested. The mean and standard deviations obtained were 17.85 and 1.955 respectively. Is the result of experiment significant?

14M 5 1

OR

10. From the following data, find whether there is any significant liking in the habit of taking soft drinks among the categories of employees.

Soft Drinks	Clerks	Teachers	Officers
Pepsi	10	25	65
Thumsup	15	30	65
Fanta	50	60	30

14M 5 4

		Hall Ticket Number :												г			7	
	L	Code: 19A143T		1									_		R- 1	9		
		II B.Tech. II Ser	nes	ter S				-				ns D	ece	emk	oer 202	2		
						_	yth o											
		Max. Marks: 70 Answer any five full qu	Jesti	ons b		•	_	ne q	uesti	•	om e	each	n unit	(5×	Time: 3 :14 = 70 <i>l</i>			
					Γ			****								Marks	СО	BL
1.		A Spherical shell of i internal pressure of circumferential stress	850	V/mn	n².Ca	ter 2	ate th	wall					•			14M	1	2
			.00 a	iia ia	aiai (511 00	OR									1 1141	•	_
2.		Derive an expression internal pressure.	n for	chai	nge		imens NIT-II		of a	a thir	n cyli	ndrid	cal s	hell	due to	14M	1	4
3.	a)	A closely coiled helic coils have a mean d and shearing stresse axial load of 200 N. (6	iame s an	ter o	f 280 ain e	ade) mr	of 14 n. Fin gy pe	I.5 m	e elo	ngat	ion,	inten	sity	of to	orsional	7M	2	2
	b)	,		•			•						•					_
		spring of question nu	mbei	· 3(a)	, it a	n ax	ial tor OR	que	of 20	N-m	ı ıs a	pplie	d. E	=20	5МРа.	7M		2
4.		Derive the expressio bending & torsion	n for	· equ	ivale		orque		en sh	aft is	s sub	oject	ed to) CO	mbined	14M	2	4
5.	a)	Derive an expression	for F	- -uler	's cri		NIT-II ng loa		a co	lumn	with	botl	n end	ds fi	xed.	7M	3	4
	b)		ng loa aving led th	ads g g out nroug	given er a	by nd i	Rank nner nts at	ine's dian	anc neters	l Eul s of	er's 37.5	form mn	ulae n and	for	tubular 2.5 mm	7M	3	4
6.	a)	List out the assumption	ons r	nade	by E	Euler	OR 's the	ory?								4M	3	2
	b)	Compare the ratio of column of the same column is 3/4th of th are pinned at both en	e cro	ss-se terna	ection I dia	nal meto s the	area. er. Th eory.	The	inte	ernal	diar	nete	r of	the	hollow	10M	3	4
7.		A masonry chimney	24m	hiah	of		VIT-I\		ar se	ection	35	ന ല	tern:	al d	iameter			
,.		and 2m internal diam on projected area. Fit the specific weight of	neter nd th	is su e ma	ibjec aximu	ted um a	to a h and m	oriz	ontal	wind	d pre	ssur	e of	1 K	N /mm²	14M	4	4
8.		A masonry retaining top and bottom width of repose is 300. We minimum stresses in	s of t	he re	etaini	ng v	vall ar	e 1 i	m an	d 4 n	n res	pect	ively.	. Th	e angle	14M	4	4
							NIT-V											
9.		Derive the expression subjected to unsymm			_		s and	d inc	linatio	on of	f neu	tral	axis	for	a beam	14M	5	3
10.	a)	How do you determing subjected to Unsymm					_	nd a	ngle	of de	eflect	ion v	when	al	peam is	7M	5	2
	b)	Describe the Mohr's principal moment of leading						e the	prin	cipal	l axis	and	d det	erm	nine the	7M	5	1

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES, RAJAMPET (AUTONOMOUS)

II B.Tech I & II Semester <u>CE & ECE</u> Mandatory Course Supplementary Examination 19AC37T, 19AC47T-Constitution of India

	H.T. No:-													
	Date:-26-1	2-202	22									Durati	ion: 3H	rs.
	Answer all	of the	e follow	/ing.								5X20=	=100 M	arks
														Marks
1	Define the Constitution		consti	tutio	n a	nd v	vrite	abo	out	the	history	of I	Indian	20M
						((OR)							
2	Describe the	admi	nistrativ	ve str	uctu	ire o	f Un	ion (Gove	ernm	nent in	India.		20M
3	How do the	•		re d	listri	bute	d bo	etwe	en	the	centra	and	state	20M
						((OR)							
4	Write about	the po	owers a	nd fu	ncti	ons c	of Su	pren	ne C	ourt	of Ind	ia.		20M
5	What are th Indian Const	•		resp	onsi	biliti	les o	of Pr	ime	Min	nister a	ccordi	ing to	20M
						((OR)							
6	Illustrate the of Council o								veri	nmei	nt. Exp	lain th	ne role	20M
7	Elaborate the features of 7		•		•	endn			and	writ	e abou	t the s	salient	20M
8	Explain the 1	ole of	f Mayoı	in L	oca	l Adı	mini	strati	on.					20M
9	What are the India?	powe	ers and	func	tion	s of t	the C	Chief	Ele	ction	n Comi	nissio	ner of	20M
						((OR)							
10	Explain the Scheduled T							elfare	e of	the	Sched	ıled C	Castes,	20M

Hall Ticket Number :						ı		
Code: 19A141T							R-19	

Il B.Tech. Il Semester Supplementary Examinations December 2022 **Building Planning & Environment**

		Building		ning & E		nment				
	Max. Marks: 70		(Civil	Engineer	ing)		Time: 3	R Haur	c	
	Answer any five full ques	tions by c	choosin	a one au	estion f	rom each uni				
	, ,	,		*****			,		•	
			UNI	T_I				Marks	СО	BL
1.	Quote and brief the class	sification o			r NBC.			14M	1	L2
) R						
2.	Describe various require	ments of								
	i. Height of the Buil		ii. Wall	Thickness	3			14M	1	L2
			UNI	T–II						
3.	Recall the minimum star									
	i. Habitable room	ii. Kitchei			n and w	vater closet		14M	2	L2
				R						
4.	Recall and brief various	types of re	esidenti	al building	js.			14M	2	L2
_	Danell verieur factore en		UNI		L :4 _	l la callalia ac		4 4 5 4	^	
5.	Recall various factors co	nsiaerea	-	ianning a I R	nospita	i building.		14M	3	L2
6.	Explain the factors to be	concider			sahaal l	huildina		14M	3	L2
0.	Explain the factors to be	CONSIDER	zu III pie	ariffing of s	SCHOOL	bullaing.		14111	3	LZ
			UNI	F 1\/						
7.	Discuss the difference b	etween C						14M	4	L2
• •	Diocaco ino amereneo s	otwoon o		R					•	
8.	A project schedule has t	he followii			s:					
	, . ,	Activity		Activity	Time					
		1-2	4	5-6	4					
		1-3	1	5-7	8					
		2-4	1	6-8	1					
		3-4	1	7-8	2					
		3-5	6	8-10	5					
		4-9	5	9-10	7					
	Construct the network di	agram						14M	4	L3
			UNI	T_V						
9.	Describe the air quality a	and quant	L	- -				14M	5	L2
	1 7	•	•	R						
10.	Explain the term green of	lesign with						14M	5	L2

Hall Ficket Number.						R-19	
Hall Ticket Number :							

Code: 19A142T

II B.Tech. II Semester Supplementary Examinations December 2022

Concrete Technology

(Civil Engineering)

	(Civil Engineering)			
	Max. Marks: 70	īme: 3	Hours	
	Answer any five full questions by choosing one question from each unit (5x1	4 = 70 1	Marks)	

		Marks	CO	Blooms Level
	UNIT-I			
1.	Illustrate how hydration happens in cement with suitable chemical reactions.	14M	CO1	L2
٠.		1-7101	001	
	OR			
2.	Classify the aggregates on the basis of their shape, size and weight density	14M	CO1	L1
	UNIT-II			
3.	Discuss various workability tests for self-compacted concrete and explain			
0.	any one test in detail.	14M	CO2	L2
	OR		002	
4.	Describe how slump cone test is conducted on fresh concrete in the laboratory.	14M	CO2	L2
	UNIT-III			
5.	Describe creep of concrete and factors influencing creep of concrete?	14M	CO3	L1
	OR			
c		4 4 8 4	000	1.0
6.	Define curing of concrete. How curing influences strength of concrete	14101	CO3	L2
	UNIT-IV			
7.	Explain the term durability and how to achieve durability of concrete as per			
	IS 456?	14M	CO4	L2
	OR			
8.		1 4 1 1	CO4	L2
Ο.	Identify the factors that have influence on durability of concrete?	14111	CO4	LZ
	UNIT-V			
9.	Explain cellular concrete and also list the applications of cellular concrete.	14M	CO5	L2
	OR			
10.	Discuss self-compacting concrete and its applications	1/11/1	CO5	L2
10.	***	1 411/1	000	LZ