$\square$
Code: 19A244T
|| B.Tech. || Semester Supplementary Examinations February 2022

## Linear Control Systems

( Electrical and Electronics Engineering )
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ( $5 \times 14$ = 70 Marks ) Use of rectangular graphs, semi log sheets and polar graphs are permitted

## UNIT-I

1. a) Write the differential equations for the given mechanical system. Also obtain an analogous electrical circuit based on forcecurrent analogy.

b) Derive the transfer function of an ac servo motor
$8 \mathrm{M} \quad 1$
6M 1

## OR

2. a) Deduce the output C 1 in the given signal flow graph using Mason's gain formula

b) Derive the transfer function of armature-controlled dc motor

## UNIT-II

3. Determine the time response of a second order system with a unit step input. Also deduce the steady state error value

## OR

4. A unity feedback system is characterized by the open loop transfer function $\mathrm{G}(\mathrm{s})=10 / \mathrm{s}^{*}(0.1 \mathrm{~s}+1)$. Determine the static error constants for the system. Obtain the steady state error when the system is subjected to an input given by the polynomial $r(t)=a_{0}$ $+a_{1}{ }^{*} t+a_{2}{ }^{*} t^{2} / 2$

## UNIT-III

5. a) Find the roots of the characteristic equations for systems whose open loop transfer functions are given below:
i) $G(s) H(s)=1 /[(s+2)(s+4)]$
ii) $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=1(\mathrm{~s}+3) /[\mathrm{s}(\mathrm{s}+3)(\mathrm{s}+8)]$
iii) $G(s)=9 /\left[s^{2 *}(s+2)\right]$.
b) The characteristic equation of a servo system is given by $a_{0} s^{4}+a_{1} s^{3}+a_{2} s^{2}+a_{3} s+a_{4}=0$. Determine the conditions which must be satisfied by the coefficients in the characteristic equations for the system to be stable

## OR

6. Sketch the root locus plot of a unity feedback system which has an open loop transfer function of $G(s)=K /\left[s^{*}\left(s^{2}+4 s+13\right)\right]$.

## UNIT-IV

7. Sketch the bode plot of a feedback system which has $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=100^{*}(\mathrm{~s}+4) /\left[\mathrm{s}^{*}(\mathrm{~s}+0.5)^{*}(\mathrm{~s}+10)\right]$. Also comment on the stability of the system.

## OR

8. Sketch the polar plot for the given transfer function and determine the frequency at which the plot crosses real axis and the corresponding magnitude.

$$
G(s)=1 /\left[s^{2 *}(1+s)(1+2 s)\right] .
$$

## UNIT-V

9. Determine the lead compensator for the given system to meet the following specifications:
i) The phase margin of the system must be greater than $45^{\circ}$
ii) The gain cross over frequency of the system must be less than $7.5 \mathrm{rad} / \mathrm{sec}$.


## OR

10. A continuous time system has a transfer function
$\mathrm{T}(\mathrm{s})=10(\mathrm{~s}+4) / \mathrm{s}^{*}(\mathrm{~s}+1)^{*}(\mathrm{~s}+3)$. Construct three different state models for the system and give block diagram representation for each state model.

## Code: 19AC44T

|| B.Tech. II Semester Supplementary Examinations February 2022

## Life Sciences for Engineers

## ( Common to EEE \& ECE)

Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ( $5 \times 14=70$ Marks )
$* * * * * * * * *$

Marks CO | Blooms |
| :---: |
| Level |

## UNIT-I

1. a) What is chloroplast? Explain in detail about its structure and functions and also draw the labeled diagram?
b) What is molecular taxonomy? Explain its role in the classification of living organisms

## OR

2. Explain the differences between prokaryotes and eukaryotes?
$14 \mathrm{M} \quad 1$
1

## UNIT-II

3. a) Describe the structure of hemoglobin and draw the labeled diagram?
b) What are antibodies and elaborate its structure with suitable diagram?

| $7 M$ | 2 | 1 |
| :--- | :--- | :--- |
| $7 M$ | 2 | 2 |

OR
4. Write in detail about the structure and functions of nucleic acids?

14M 2
2

## UNIT-III

5. What is photosynthesis and explain the mechanism of photosynthesis?

14M 3

## OR

6. a) Elaborate oxidative phosphorylation?
b) Write the industrial applications of enzymes with suitable examples?

7M $\quad 3$
1

## UNIT-IV

7. What is cell division? Elaborate mitosis and meiosis with suitable diagrams?

14M 4

## OR

8. a) What are the three laws of inheritance with examples?

7M 4
b) What is RNA? Explain its structure and functions and draw labeled diagram?

## UNIT-V

9. a) Define transgenecis and explain the applications of transgenic microbes?

7M 5
b) What are biosensors and biochips and add a note on their applications?
$7 \mathrm{M} \quad 5$

## OR

10. What is recombinant DNA technology and explain various steps involved in recombinant DNA technology?
$\square$

## Code: 19AC42T

|| B.Tech. II Semester Supplementary Examinations February 2022

## Numerical Methods and Transform Techniques

## ( Common to EEE \& ECE )

Time: 3 Hours
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ( $5 \times 14=70$ Marks )

## UNIT-I

1. a) By using Regula - False method, determine an approximate root of the equation $x^{4}-x-10=0$ that lies between 1.8 and 2. Carry out three approximations.

7M 1
3
b) Solve $x^{3}=2 x+5$ for a positive root by iteration method.

7M 1

## OR

2. a) Determine ${ }^{2 \times+}$ ) of the following table using Newton's forward formula

| $\frac{y}{x}(54$ | 50 | 60 | 70 | 80 |
| :---: | :---: | :---: | :---: | :---: |
| $y$ | 205 | 225 | 248 | 274 |

b) The population of a town is as follows

| years | 1921 | 1931 | 1941 | 1951 | 1961 | 1971 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| population | 20 | 24 | 29 | 36 | 46 | 51 |

Estimate the increase in population during the period 1955 to 1961.
7M 1
3

## UNIT-II

3. a) Evaluate $\int_{0}^{-5} \frac{a^{x}}{0+x+5}$ by rapezoidel rule using 11 coordinates.


## OR

 $\frac{d y}{d x}=y^{2}+x, \quad y(0)=1$

b) $\begin{aligned} & \frac{d y}{d x}=1+\begin{array}{l}-K \text { third orde } \\ x y \text { and } y(0)\end{array}=1 ?\end{aligned}$

7M 2
3

## UNIT-III

5. a) Determine the Taylor's series to represent the function $\frac{-z^{2}-1}{(z+2)(z+3)}$, in the region $\quad|z|<2$
b) [he region the Laurent seri

Jetermin $\frac{z^{2}-6 z-1}{}$ es expansion of the function $f(z)=\overline{(z-1)(z-3)(z+2)}$ in the region $3<|z+2|<5 \quad 7 M \quad 3 \quad 3$
6. a) Determine the poles and residues at each pole $-\frac{z e^{2}}{(z-1)^{3}}$

## the poles and res

b) Evaluate $f_{x} \frac{4-3 z}{z(z-1)(z-2)} d z$ where $c$ idues at eact $c$ circle $|z|=3 / 2$ using residue theorem.

## UNIT-IV


b) Using Four ${ }_{\text {if - inte }}{ }^{\text {gral }}{ }_{\text {rar }}^{\text {rar }}$ sh ${ }^{\text {raw }}$
d $\epsilon-\cdots\left\{\begin{array}{l}\text { o, }\end{array}\right.$

$$
\int_{0}^{1} \frac{1-\cos }{-\lambda \lambda} \sin x \lambda d \lambda= \begin{cases}\frac{\pi}{2}, & \text { if } 0<x< \\ 0, & \text { if } x>\pi\end{cases}
$$

7M 4
3
8. a) Determine the Fourier sine and cosine transforms of $f(x)=\frac{e^{-}-a x}{x}$ and deduce tha $\int_{0}^{0} \frac{e^{-a x}-e^{-b x}}{x} \operatorname{sins} x d x \mathrm{t}=\tan ^{-1}\{\mathrm{~s} / \mathrm{a}\}-\mathrm{tna}^{-1}\{\mathrm{~s} / \mathrm{b}\}$.
b) Determine the Fourier cosine transforms of $f(x)=e^{-a x} \operatorname{cosax}$

## UNIT-V

9. a) Showthat $Z(\cos n \theta)=\frac{z(z-\cos \theta)}{z^{2}-2 z \cos \theta+1}$ and $Z(\sin n \theta)=\frac{z \sin \theta}{z^{2}-2 z \cos \theta+1}$ 7M 5
b) Solve the difference equation using Z-transform $y(n+2)+5 y(n+1)+$ $4 y(n)=2^{n}$ given that $y(0)=1, y(1)=-4$.

OR
10. a) Using convolution, determine Z-Transform of $\left[\frac{z^{2}}{(z-1)(z-3)}\right]$
b) Using the $Z$-transform, solve $u_{n+2}+4 u_{n+1}+3 u_{n}=3^{n}$ with $u_{0}=0$, $\mathrm{u}_{1}=1$

## Code: 19A242T

|| B.Tech. II Semester Supplementary Examinations February 2022
Electromagnetic Fields
( Electrical and Electronics Engineering )
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ( $5 \times 14=70$ Marks )
$* * * * * * * * *$

## UNIT-I

1. a) State and explain Coulomb's law in vector form?
b) Calculate EFI at a point $P(3,-4,2)$ in free space for $Q_{1}=2 \mu \mathrm{c}$ at $(0,0,0)$ and $Q_{2}=3 \mu \mathrm{c}$ at $(-1,2,3)$.

Marks CO | Blooms |
| :---: |
| Level |

7M CO1 L3

## OR

2. a) Derive the expression for Electric Field Intensity due to Infinite sheet of charge using Gauss' law?

7M CO1 L3
b) State and Explain Maxwell's Second equation?

## UNIT-II

3. a) Derive the expression for electric potential and EFI due to an electric dipole?
b) Write short notes on conduction and convection current density?

7M co1
L3

7M CO1 L3

7M CO2 L1
7M CO2 L1

## OR

4. a) Derive the conditions at the boundary between two dielectrics?
b) Derive the Laplace's and Poisson's equations in an electric field?

## UNIT-III

5. a) Using Biot-Savart's Law find MFI due to a straight current carrying filament?
b) State and explain Ampere's Circuital Law?

## OR

6. a) Derive the expression for vector magnetic potential from Biot-Savart's law.
b) State and Explain Maxwell's Fourth equation?
$7 \mathrm{M} \mathrm{CO2}$
$7 \mathrm{M} \mathrm{CO2}$

| 7 M | CO 3 | L 3 |
| :--- | :--- | :--- |
| 7 M | CO 3 | L 3 |


| 7 M | CO 3 | L 3 |
| :--- | :--- | :--- |
| 7 M | CO 3 | L 3 |

## UNIT-IV

7. a) Derive the expression for force on a current element in a magnetic field?

7M co
L1
b) Two long parallel conductors are separated by 2 cm in air carrying current of 100 A flowing in opposite directions. Find the force per meter length of the conductor?

OR
8. a) Derive the expression for torque on a current loop placed in a magnetic field?
b) Derive the expression for energy stored and energy density in the magnetic field

## UNIT-V

9. a) State and explain Faraday's laws of electromagnetic induction in point form and Integral form?

7M cos
L3
7M CO5
b) Derive the expression for modified Maxwell's equation for time varying fields.

OR
10. a) Find the displacement current within a parallel plate capacitor where $=100$ o, $A=0.1 \mathrm{~m}^{2}, \mathrm{~d}=0.05 \mathrm{~mm}$ and the capacitor voltage is 100 sin $2000 \pi \mathrm{t}$ volts.

7M CO5
L3
b) State and explain Poynting theorem? What is the significance of Poynting Vector?

7M CO5

## Code: 19A241T

II B.Tech. II Semester Supplementary Examinations February 2022
Electrical Machines-II
( Electrical and Electronics Engineering )
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ( $5 \times 14=70$ Marks )

## UNIT-I

1. a) Explain the effects of skewing the rotor slots in a squirrel cage induction motor. Discuss the factors determining the choice of rotor slots in a squirrel cage induction motor.
b) The rotor emf of a 3 phase, 6 pole, $400 \mathrm{~V}, 50 \mathrm{~Hz}$ induction motor alternates at 3 Hz . Compute the speed and percentage slip of the motor. Find the rotor copper loss per phase, if the full load input to rotor is 111.9 kW .

## OR

2. a) Explain the terms slip, slip frequency, wound rotor and cage rotor.
8M 1 L1
b) What is the most commonly used 3-phase ac motor? Justify the reason.

## UNIT-II

3. a) How is the speed of a 3-phase induction motor controlled by its stator voltage control? Show that the region of speed control by the method is limited by the slip at which maximum torque develops.

9M 3
b) What are the applications of different starters?
5M $\quad 3 \quad$ L3

## OR

4. a) What synchronous speeds can be obtained from the combination of 50 Hz induction motors having 8 poles and 4 poles?

6M 43
b) Derive the induction motor torque speed characteristic under V/f control. Explain why $\mathrm{E} / \mathrm{f}$ control is superior to $\mathrm{V} / \mathrm{f}$ control.
$8 \mathrm{M} \quad 2 \quad 4$

## UNIT-III

5. a) Prove that a single-phase motor winding when excited by a single-phase supply produces two equal and opposite revolving fields.
$\begin{array}{lll}8 \mathrm{M} & 5 & 4\end{array}$
b) State the reasons for the inferior performance of single-phase induction motors compared to three phase motors.
$\begin{array}{lll}6 M & 6 & 4\end{array}$

## OR

6. a) Draw the equivalent circuit of single-phase induction motor with the help of double field revolving theory.
$\begin{array}{lll}7 M & 2 & 4\end{array}$
b) Show that the starting torque of a single-phase induction motor is zero.

7M 5
4

## UNIT-IV

7. a) Derive from first principles, the emf equation of a 3-phase synchronous machine.
b) What are the causes of harmonics in the voltage waveform of an alternator? How can these be minimized?
$\begin{array}{lll}7 M & 1\end{array}$

## OR

8. a) Explain how the armature reaction influences the field distribution of an alternator for varying power factor.
b) Compare synchronous impedance method and ampere turn method of predetermining regulation of alternators.

| 8 M | 2 | 4 |
| :--- | :--- | :--- |

UNIT-V
9. a) Mention the need for parallel of alternators. State the conditions to be satisfied before connecting an alternator to the infinite bus bars.

8M $1 \quad 1$
b) What are the advantages of connecting the alternators in parallel? $\quad 6 \mathrm{M} \quad 1 \quad \mathrm{~L}$

OR
10. a) Explain the construction and principle of operation of a synchronous motor.
b) What is a synchronous condenser? Show the region of operation of the condenser on v-curves. Where are synchronous condensers used?
$7 \mathrm{M} \quad 3$
$\square$
Code: 19A342T
II B.Tech. Il Semester Supplementary Examinations February 2022

# Fluid Mechanics and Hydraulic Machinery 

( Mechanical Engineering )
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ( $5 \times 14=70$ Marks )
$* * * * * * * * *$

## UNIT-I

1. a) Explain the working of a Bourdon pressure gauge with a neat sketch.
b) An open tank contains water upto a depth of 1.5 m and above it an oil of specific gravity 0.8 for a depth of 2 m . Find the pressure intensity:
i) at the interface of the two liquids, and
ii) at the bottom of the tank

## OR

2. a) Explain with neat sketch of the following:
i) Simple manometers
ii) U tube manometers

6M 1 L2
b) A liquid is compressed in the cylinder having the volume of $0.0012 \mathrm{~m}^{3}$ at a pressure of $690 \mathrm{~N} / \mathrm{cm}^{2}$. What would be the new pressure in order to make its volume $0.0119 \mathrm{~m}^{3}$ ? Assume bulk modulus of elasticity of the liquid $6.9 \times 10^{4} \mathrm{~N} / \mathrm{cm}^{2}$.

## UNIT-II

3. a) What is a pitot tube? How will you determine the velocity at any point using pitot tube?
b) A crude oil of kinematic viscosity 0.4 stoke is flowing through a pipe of diameter 300 mm at a rate of 300 litres $/ \mathrm{sec}$. Find the head lost due to friction for a length of 50 m of a pipe.

## OR

4. a) State Bernoulli's theorem. Derive it from the first principle and also state the assumptions.
b) An orifice meter with orifice diameter 15 cm is inserted in a pipe of 30 cm diameter. The pressure difference measured by a mercury oil differential manometer on the two sides of the orifice meter gives a reading of 50 cm of mercury. Find the ratio of flow of oil of specific gravity 0.9 when the coefficient of discharge of the orifice meter is 0.64 .

## UNIT-III

5. a) Discuss a pumped storage type of power station.
b) A turbine works with overall efficiency of $83 \%$. The gross head and flow rate are 88 m and $20 \mathrm{~m}^{3} / \mathrm{sec}$. The frictional losses in penstock are 4 m . Calculate the power developed.

## OR

6. A jet of water having velocity of $45 \mathrm{~m} / \mathrm{s}$ impinges without a shock on a series of vanes moving at $15 \mathrm{~m} / \mathrm{s}$, the direction of the motion of vanes being inclined at $20^{\circ}$ to that of the jet. The relative velocity at outlet is 0.9 of that at inlet, and the absolute velocity of water at exit is normal to the motion of vanes. Find:
i. vane angles at entrance and exit
ii. work done on vanes per unit weight of water supplied by the jet and
iii. the hydraulic efficiency

## UNIT-IV

7. a) By means of a neat sketch, explain the governing mechanism of Francis Turbine.
b) A turbine is to operate under a head of 25 m at 200 rpm . The discharge is 9 cumec. If the efficiency is $90 \%$, determine the performance of the turbine under a head of 20 m .

## OR

8. Design a single jet Pelton wheel to develop a power of 500 KW under a head of 160 m while running at 300 rpm . Assume $\mathrm{Ku}=0.45, \mathrm{Cv}=0.985$ and overall efficiency $=80 \%$. Calculate the jet diameter, wheel diameter and number of buckets. Give a fully dimensional sketch of a bucket.

## UNIT-V

9. a) Explain the construction, principle and working of a Reciprocating pump with a neat sketch.
b) The internal and external diameters of the impeller of a centrifugal pump are 225 mm and 450 mm respectively. The pump is running at 1100 rpm . The vane angles at inlet and outlet are 250 and 350 respectively. The water enters the impeller radially and velocity of flow is constant. Determine the work done by the impeller per unit weight of water

## OR

10. a) Explain: Slip and Indicator Diagram.
b) A single acting reciprocating pump has piston of diameter 150 mm and stroke of length 250 mm . The piston makes 50 double strokes per minute. The suction and delivery heads are 5 m and 15 m respectively. Find
(i) discharge capacity of the pump in litres per minute;
(ii) force required to work the piston during the suction and delivery strokes if the efficiency of suction and delivery strokes are $60 \%$ and $75 \%$ respectively; and
(iii) power required to operate the pump
