	Hall Ticket Number :			
		R-19	•	
	Code: 19A243T II B.Tech. II Semester Supplementary Examinations April 202 Generation and Transmission of Electric Power (Electrical and Electronics Engineering)	3		
		e:3⊦ 70 M		
	UNIT-I	Marks	CO	BL
1.	Discuss the merits and demerits of steam power plants.	14M	CO1	L2
2.	OR Discuss the boiling water reactor, mentioning its advantages and disadvantages.	14M	CO1	L2
	UNIT–II			
1. 2. 3. 4. 5. 6. 7.	Discuss the concept of geometric mean distance. How is this concept use to find the inductance of composite conductor line? OR	14M	CO2	L2
4.	Discuss the transposition of conductors of a three phase transmission line.	14M	CO2	L2
	UNIT–III			
5.	Obtain A, B, C, D constants for a short transmission line. OR	14M	CO3	L2
6.	Explain the influence of capacitance on performance of loaded line.	14M	CO3	L2
7. 8. 9.	UNIT-IV Determine the voltage across each disc of suspension insulators as a percentage of the line voltage to earth. The self and capacitance to ground of each disc is <i>C</i> and 0.2 <i>C</i> respectively. The capacitance between the link pin and the guard ring is 0.1 <i>C</i> . (<i>b</i>) If the capacitance to the line of the lower link pin were increased to 0.3 <i>C</i> by means of a guard ring, determine the redistribution of voltage. Also determine the string efficiency in each case. OR	14M	CO4	L3
8.	What is Ferranti effect? Derive and expression for the voltage rise of an unloaded line.	14M	CO4	L2
[•] 9.	UNIT-V A single core cable 5 km long has an insulation resistance of 0.4 M ohm. The core diameter is 20 mm and the diameter of the cable over the insulation is 50 mm. Calculate the resistivity of the insulating material. OR	14M	CO5	L3
10.	A single-core 66 kV cable working on 3-phase system has a conductor diameter of 2 cm and a sheath of inside diameter 5.3 cm. If two intersheaths are introduced in such a way that the stress varies between the same maximum and minimum in the three layers, find : (i) positions of intersheaths (ii) voltage on the intersheaths			
	(iii) maximum and minimum stress	14M	CO5	L3

	Ticket Number : R-1	0	7
Code	e: 19A244T	. /	
	II B.Tech. II Semester Supplementary Examinations April 2023		
	Linear Control Systems		
	(Electrical and Electronics Engineering) ax. Marks: 70 Time:	3 Hou	rc
	swer any five full questions by choosing one question from each unit $(5x14 = 70)$		
	********		-
	UNIT–I	Marks	СО
1.	Find the closed loop transfer function of the given system using block		
	reduction technique.		
	R(s) + c + c(s)		
	$\sim = \otimes = \circ \otimes = \circ \circ \circ = \circ \circ \circ = \circ \circ \circ = \circ \circ \circ \circ = \circ \circ \circ \circ \circ = \circ \circ \circ \circ \circ = \circ \circ \circ \circ \circ \circ = \circ \circ \circ \circ \circ = \circ \circ \circ \circ \circ \circ \circ \circ = \circ \circ$		
	H.		
	and the state of t		
	<i>H</i>	14M	1
	OR		
2.	Deduce the output C1 in the given signal flow graph using Mason's gain		
	formula		
	H ₃ 1 G		
	G ₄ H ₂		
	H ₄	14M	1
	UNIT–II		
3.	A unity feedback system is characterized by the open loop transfer function		
	$G(s) = 10/s^{*}(0.1s+1)$. Determine the static error constants for the system.		
	Obtain the steady state error when the system is subjected to an input given by the polynomial $r(t) = a_0 + a_1 t + a_2 t^2 / 2$	14M	2
	OR		2
4.	Derive the time domain specifications of a second order system	14M	2
			_
5.	ntrol system has an open loop transfer function of		
	A unity feedback control optimized an optimized in optimized in the set of $G(s) = K/s(s^2+4s+3)$. Sketch the root locus	14M	3
	OR		
6. a)	· · · · · · · · · · · · · · · · · · ·		
	characteristics equation 9S ⁵ -20S ⁴ +10S ³ -S ² -9S-10=0. Comment on the location	4014	2
ь)	of characteristic equation.	10M 4M	3
b)	Define stability of a control system	41/1	3
7.	UNIT-IV Sketch the polar plot for the given transfer function and determine the		
<i>.</i>	frequency at which the plot crosses real axis and the corresponding		
	magnitude. $G(S) = 1/[S^{2}(1+S)(1+2S)]$.	14M	3
	OR		
8.	Sketch the Bode plot and find the Phase margin and gain margin for the		
	system $G(S)H(S) = 10S(3+S) / S(S+2)(S^2+S+2)$.	14M	3
~			
9.	A continuous time system has a transfer function $T(s)=10(s+4) / s^*(s+1) * (s+3)$.		
	Construct three different state models for the system and give block diagram representation for each state model.	14M	4
	OR		•
	What is state transition matrix? State and prove its properties	7M	4
0. a)			
0. a) b)	Derive the expression for transfer function of State Model.	7M	4

Hall Ticket Number :

	На	Il Ticket Number :	
	Cod	de: 19AC44T	-19
		II B.Tech. II Semester Supplementary Examinations April 2023	
		Life Sciences for Engineers	
		(Common to EEE & ECE)	
		Time: swer any five full questions by choosing one question from each unit (5x14 = 7 ********	3 Hours) Marks)
		UNIT–I	Marks
1.	a)	Describe is Nucleus? Write their structure and important functions and draw the labelled diagram?	7M
	b)	Describe is mitochondrion? Write their structure and important functions and draw the labelled diagram?	7M
		OR	
2.	a)	Describe is Endoplasmic reticulum? Write their structure and important	714
	b)	functions and draw the labelled diagram? Explain the kingdom of Animalia?	7M 7M
	b)		7 101
		UNIT–II	
3.		Describe the structure of DNA & RNA?	14M
		OR	
4.		Define the proteins? Write the structure and functions of proteins?	14M
		UNIT–III	
5.	,	Explain the Oxidative phosphorylation?	7M
	b)	What is neuron? Write their structure with draw the labelled diagram?	7M
6.		OR Explain the reaction of Electron Transport Chain?	14M
0.			14101
		UNIT-IV	
7.	a)	Briefly describe the transcription and translation?	7M
	b)	Write the types of cell division and signifience of cell division?	7M
		OR	
8.	a)	Explain Mendel dihybrid cross experiment?	7M
	b)	Describe the sequential steps in the replication of DNA?	7M
_		UNIT-V	
9.	a)	Explain the Importance of DNA Cloning?	7M
	b)	Discuss the application of Recombinant DNA Technology? OR	7M
10.	a)	Describe the types of Biosensors?	7M
	b)	Write short notes on restriction enzymes?	7M
	,	***	

	На	I Ticket Number :			
L	C		R-19	>	
	Мс	swer any five full questions by choosing one question from each unit (5x14 =	ne:3 F		
		******	Marks	СО	Bl
1.	a)	UNIT–I Explain the h-parameters of the Two-Port Network.	7M	CO1	L
••	b)	Determine the h-parameters of the Two-Port Network shown below.	7 101	001	
		25Ω 10Ω ≥30Ω			
		OR	7M	CO1	L
2.	a) b)	Develop the relationship for 'Z' parameters in terms of 'ABCD' parameters For a given 2-port network has the following Z-parameters	7M	CO1	L
		Network-1: V ₁ =8I ₁ +3I ₂ and V ₂ =4I ₁ +7I ₂ Determine its ABCD parameters.	7M	CO1	L
3.	a) b)	Determine the Laplace transform of the following (i) $f(t) = tsin2t$ (ii) $f(t) = 3t^4$ - $e^{-t} + 4e^{-3t} cos5t - 2e^{-4t} sinh3t$ Determine the Laplace transform of the waveform shown below.	7M	CO2	L
	5)	h(t) $2V \xrightarrow{h(t)}_{0} \xrightarrow{1}_{2} \xrightarrow{3}_{3} \xrightarrow{4} t(sec)$	7M	CO2	L
		OR			
4.	a)	Develop the step response of RLC series circuit using Laplace Transform approach.	14M	CO2	L
	b)	UNIT-III			
5.	a)	Develop the dc transient response of RC series circuit using classical differential equation solvation approach.	7M	CO3	L
	b)	A series RC circuit with R= 5 and C= 0.01μ f has a constant voltage V=50v applied at t=0. Determine the expression for the current i(t) using classical differential equation approach. OR	7M	CO3	L
6.		Develop the transient response of RLC series circuit for sinusoidal excitation using classical differential equation solvation approach.	14M	CO3	L
			-	o 1 of 7	

Page **1** of **2**

7M CO4 L3

UNIT–IV

- 7. a) Given that $v(t) = (5-10 \cos(\omega t+60^\circ))$ V and $i(t) = (5+X \cos\omega t)$ A where $\omega=100$ rad/s are the voltage across and current through circuit. If the average power delivered to the circuit is zero then Determine the value of 'X' in amperes.
 - b) Determine the Fourier transform of the following functions (i) $f(t) = e^{-at}$ (ii) f(t) = (t) 7M CO4 L3

OR

Determine the exponential Fourier series expansion of the waveform below.
 v(t)

9.

10.

b)

	1 1 + t(sec)			
	0 1 2 3 14	М	CO4	L3
a)	$H() = \frac{4}{2} + 2^{\frac{2}{2}} + 2$	M	CO5	L5
b)	Test the following function is positive real or not?			
	$F(s) = \frac{s^2 + 4}{s^3 + 3s^2 + 3s + 1}$ 7	M	CO5	L5
	OR			
a)	Determine the Foster form-I realization for the function			
	$F(s) = \frac{(s+1)(s+3)}{s}$			

$$\frac{\Gamma(s) - \frac{1}{(s+2)(s+4)}}{\text{Determine the Cauer form-II realization for the function}}$$
7M CO5 L3

$$F(s) = \frac{2(s+1)(s+4)}{(s+2)(s+6)}$$
7M CO5 L3

Code	e: 19AC42T	R-19	
Jud	II B.Tech. II Semester Supplementary Examinations April 20	23	
	Numerical Methods and Transform Techniques		
Mc	(Common to EEE &ECE) ax. Marks: 70 Tir	ne:3+	
	swer any five full questions by choosing one question from each unit (5x14		
	*****	Marks	со
	UNIT–I		
	Find the real root of $xe^x - \cos x = 0$ using Bisection Method	14M	CO1
、	OR		
a)	Find the real root of $\cos x = xe^x$ using False position Method	7M	CO1
b)	Construct Newton's forward interpolating polynomial for the following data.x46810		
	x 4 6 8 10 y 1 3 8 16	7M	CO1
	UNIT–II		
a)	Obtain $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x=1.2 from the following data		
a)			
	x 1 1.2 1.4 1.6 1.8 2 2.2 y 2.7183 3.3201 4.1552 4.9530 6.0496 7.3891 9.0250	714	<u> </u>
L)		7M	CO2
b)	Use Runge Kutta method to find y at x=0.1 given that $\frac{dy}{dx} = x + y$ and y=1		
	when x=0	7M	CO2
	OR		
	Given $\frac{dy}{dx} = x^2 + y$, $y(0) = 1$. Determine $y(0.02)$, $y(0.04)$, $y(0.06)$ by		
	Modified Euler's method.	14M	CO2
	UNIT-III		
a)	Expand $f(z) = \frac{1}{z^2 - 3z + 2}$ in the region i) $0 < z - 1 < 1$, ii) $1 < z < 2$	7M	CO3
b)	Evaluate $\oint_{c} \frac{dz}{(z^2+4)^2}$ where $c: z-i = 2$ using Cauchy Residue theorem.		
		7M	CO3
ລ)	OR Find the Talor's series expansion of coshz about $z = fi$	714	CO3
b)	Determine the poles and residues at each pole of the	7 101	005
	function $f(z) = \frac{z+1}{z^2(z-2)}$		
		7M	CO3
a)	Using Fourier integral, show that $e^{-ax} = \frac{2a}{f} \int_{0}^{\infty} \frac{\cos x}{x^2} dt$	714	CO4
	1 x < 1	7 111	CO4
b)	Find the Fourier transform of $f(x) = \begin{cases} 1, x < 1 \\ 0, x > 1 \end{cases}$ and hence show		
	that $\int_{-\infty}^{\infty} \frac{\sin x}{x} dx = \frac{f}{2}$		
	$\lim_{x \to 0} \int_{0}^{1} \frac{dx}{x} = 2$	7M	CO4
	OR		
	Find the Fourier sine transform of $e^{- x }$	14M	CO4
	UNIT-V		
	If $f(z) = \frac{2z^2 + 3z + 4}{(z-3)^3}$, $ z > 3$ then find the values of f(1), f(2), f(3).		CO5
	(z - 3) OR	14M	
	Find $Z^{-1}\left(\frac{z}{(z-1)(z^2+1)}\right)$	4 4 8 4	CO5
	***	14IVI	

	ŀ	Hall Ticket Number :			
		code: 19A242T	R-19		
	C	II B.Tech. II Semester Supplementary Examinations April 202	3		
		Electromagnetic Fields			
	N	(Electrical and Electronics Engineering) Max. Marks: 70 Tim	e: 3 Hou	irc	
		Answer any five full questions by choosing one question from each unit (5x14 =			
		UNIT-I	Marks	CO	BL
1.	a)	Derive the expression for electric field intensity due to infinite sheet of charge $_{\rm S}$ C/m ²	8M	1	3
	b)	Derive point form of Maxwell's second equations. OR	6M	1	3
2.	a)	State and explain vector form of Coulombs law.	7M	1	2
	b)	Derive the potential at a point P when a charge q is moving from infinite to point P. UNIT-II	7M	1	3
3.	a)	Define potential gradient and derive the relation between E and V	7M	1	1
	b)	A dipole having moment P = $3ax - 5ay + 10 a_z$ nCm is located at Q (1, -2, -4) in the space. Find V at P (2, 3, 4).	7M	1	3
		OR			
4.	a) b)	Derive the expression for the spherical capacitance.	7M	2	3
	b)	Deduce the boundary conditions for dielectric to dielectric with tangential and normal component.	7M	1	4
5.	a)	UNIT-III Determine an expression for H at (0, 0, h) of a circular wire carrying a current I in		2	3
	b)	clockwise direction. The radius of the circle is 'R' and wire is in X-Y plane. A circular loop located on $X^2+Y^2=9$, z=0 carries a current of 10A along a	9M	3	3
	~)	determine H at (0,0,4)	5M	3	3
6.	a)	Derive Maxwell's fourth equation in static magnetic field.	7M	3	3
	b)	Derive the expression for magnetic field intensity due to an Infinite conductor carrying a current I Using ampere's circuital law.	7M	3	3
		UNIT-IV		-	-
7.	a) b)	Evaluate the magnetic force due to a moving point charge in the magnetic field.	7M	3	3
	b)	A negative charge Q= -40nc is moving with a velocity of $6X10^{-6}$ m/sec in a direction specified by the Unit vector $a_v = -0.48a_x - 0.6a_v + 0.64a_z$. Find the magnitude of vector			
		force exerted by the field $\vec{B} = 2a_x-3a_y+5a_z$ T, $\vec{E} = 2a_x-3a_y+5a_z$ Kv/m.	7M	3	3
0	-)	OR	-14		•
8.	a) b)	Describe the classification of magnetic materials with examples. Derive the expression for magnetic force on a current element in the external	7M	4	2
	0)	magnetic field.	7M	3	3
9.		Explain Faraday's laws of Electromagnetic Induction and Derive the expression for			
		static induced emf and dynamic induced emf.	14M	5	2
10.	a)	OR Explain Faraday's laws of Electromagnetic Induction and Derive the expression for			
		dynamic induced emf.	7M	5	2
	b)	A circular cross section conductor of radius 3 mm carries a current $Ic = 5 \sin (6 \times 108)$ μ A what is the amplitude of the displacement current density if = 40 ms/m and r =1. ***	7M	5	3
		••••			

C	ode	:: 19A241T	-19	
C	oue	II B.Tech. II Semester Supplementary Examinations April 2023	3	
		Electrical Machines-II		
	Мс	(Electrical and Electronics Engineering) 1x. Marks: 70 Time	e: 3 Ho	Urs
	Ans	wer any five full questions by choosing one question from each unit (5x14 =	70 Mar	ks)
			Marks	со
		UNIT-I		
1.	a) b)	Write the comparison between cage rotor and slip ring rotor with neat diagrams Obtain the relation between rotor input, rotor copper losses and rotor output	6M	1
	0)	in terms of slip(s).	8M	2
		OR		
2.	a)	Derive the expression for maximum torque developed by the 3-Ph induction motor.	7M	1
	b)	A 4 pole, 50Hz, 3-Ph IM has a starting torque of 1.6 and maximum torque of	7 111	I
		2 times the full load torque at rated voltage and frequency. Determine the slip		
		at maximum torque and speed at maximum torque.	7M	2
3.	a)	Explain the speed control of induction motor using Rotor resistance control.	6M	3
	b)	Two 50 Hz, 3- induction motor having 6 and 4-poles respectively are		
		cumulatively cascaded. The 6-pole motor being connected to the main supply. Determine frequencies of rotor currents and the slips referred to each		
		stator field. If the set has slip of 2%.	8M	3
		OR		
4.		List the speed control methods of induction motor from (i) Stator side (ii) Rotor side.	4M	1
	b)	The rotor of a 4 pole, 50Hz, SRIM has a resistance of 0.3ohms/ph and runs at 1440 rpm at full load. Calculate the external resistance/ph which must be		
		added to lower the speed to 1320 rpm, the torque being the same as before.	10M	3
_				
5.		Write a short note on (i) Capacitor Start Induction motor (ii) Capacitor Start-Run Induction motor	14M	2
		OR		
6.		Explain the construction and working of shaded pole Induction motor.		-
		Mentions its applications.	14M	2
7.	a)	Derive the generalized expression for an induced emf/ph in 3-ph alternator		
	,	having fractional pitch and distributed winding.	7M	5
	b)	A three phase, 50 Hz, star connected alternator has a double layer winding distributed in 36 slots, each slot containing 16 conductors. The flux per pole		
		is 0.04 wb. Evaluate the terminal emf at open circuit.	7M	4
_		OR		
8.	a)	Develop the expression for distribution factor of a 3-Ph synchronous machine from fundamental.	7M	6
	b)	Determine the distribution factor for 1-Ph alternator having 6 slots/pole		-
		(i) When all the slots are wound.		
		(ii) When only four adjacent slots/pole are wound.	7M	4
9.		List the methods of synchronizing 3-Ph alternator to the infinite bus bar. Explain		
		two bright and one dark lamp, synchroscope method with neat diagram.	14M	6
0	c)	OR Explain why the 2 Bh synchronous motor is not a solf starting motor?	714	F
υ.	a) b)	Explain why the 3 – Ph synchronous motor is not a self-starting motor? Explain the effect of change of mechanical power input of alternator when it	7M	5
		is connected to Infinite bus bar.		