Hall Ticket Number :

Code: 19A243T
II B.Tech. II Semester Supplementary Examinations April 2023

Generation and Transmission of Electric Power

(Electrical and Electronics Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. Discuss the merits and demerits of steam power plants.

OR

2. Discuss the boiling water reactor, mentioning its advantages and disadvantages.

14M CO1

UNIT-II

3. Discuss the concept of geometric mean distance. How is this concept use to find the inductance of composite conductor line?

OR

4. Discuss the transposition of conductors of a three phase transmission line. $14 \mathrm{M} \quad \mathrm{CO} \quad \mathrm{L} 2$

UNIT-III

5. Obtain A, B, C, D constants for a short transmission line.

14M CO3 L2
OR
6. Explain the influence of capacitance on performance of loaded line.

14M CO3 L2

UNIT-IV

7. Determine the voltage across each disc of suspension insulators as a percentage of the line voltage to earth. The self and capacitance to ground of each disc is C and $0.2 C$ respectively. The capacitance between the link pin and the guard ring is $0.1 C$. (b) If the capacitance to the line of the lower link pin were increased to 0.3 C by means of a guard ring, determine the redistribution of voltage. Also determine the string efficiency in each case.

OR

8. What is Ferranti effect? Derive and expression for the voltage rise of an unloaded line.

14M CO4 L2

UNIT-V

9. A single core cable 5 km long has an insulation resistance of 04 M ohm. The core diameter is 20 mm and the diameter of the cable over the insulation is 50 mm . Calculate the resistivity of the insulating material.

14 M CO5 L3

OR

10. A single-core 66 kV cable working on 3-phase system has a conductor diameter of 2 cm and a sheath of inside diameter 5.3 cm . If two intersheaths are introduced in such a way that the stress varies between the same maximum and minimum in the three layers, find:
(i) positions of intersheaths
(ii) voltage on the intersheaths
(iii) maximum and minimum stress

Hall Ticket Number :
Code: 19A244T
\square
|| B.Tech. II Semester Supplementary Examinations April 2023

Linear Control Systems

(Electrical and Electronics Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

Marks CO BL
UNIT-I

1. Find the closed loop transfer function of the given system using block reduction technique.

OR
14 M 12
2. Deduce the output C 1 in the given signal flow graph using Mason's gain formula

3. A unity feedback system is characterized by the open loop transfer function $G(s)=10 / s^{*}(0.1 \mathrm{~s}+1)$. Determine the static error constants for the system. Obtain the steady state error when the system is subjected to an input given by the polynomial $r(t)=a_{0}+a_{1}{ }^{*} t+a_{2}{ }^{*} t^{2} / 2$

OR
4. Derive the time domain specifications of a second order system

14M 21
UNIT-III
5. A unity feedback co ntrol system has an open loop transfer function of $\underset{G(s)=K}{\text { unity }} \underset{/ s\left(s^{2}+4 s+3\right)}{\text { feed }}$. Sketch the root locus

OR
6. a) By Routh stability criterion determine the stability of the system represented by characteristics equation $9 S^{5}-20 S^{4}+10 S^{3}-S^{2}-9 S-10=0$. Comment on the location of characteristic equation.
b) Define stability of a control system

UNIT-IV

7. Sketch the polar plot for the given transfer function and determine the frequency at which the plot crosses real axis and the corresponding magnitude. $G(S)=1 /\left[S^{2}(1+S)(1+2 S)\right]$.
$14 \mathrm{M} \quad 3 \quad 2$
OR
8. Sketch the Bode plot and find the Phase margin and gain margin for the system $G(S) H(S)=10 S(3+S) / S(S+2)\left(S^{2}+S+2\right)$.

14 M 32
UNIT-V
9. A continuous time system has a transfer function $T(s)=10(s+4) / s^{*}(s+1) *(s+3)$. Construct three different state models for the system and give block diagram representation for each state model.

14 M 42
OR
10. a) What is state transition matrix? State and prove its properties

7M $\quad 4 \quad 1$
b) Derive the expression for transfer function of State Model.

7M $\quad 4 \quad 1$

Hall Ticket Number :

Code: 19AC44T

R-19

|| B.Tech. II Semester Supplementary Examinations April 2023

Life Sciences for Engineers

(Common to EEE \& ECE)

Time: 3 Hours
Max. Marks: 70

UNIT-I

1. a) Describe is Nucleus? Write their structure and important functions and draw
the labelled diagram?
b) Describe is mitochondrion? Write their structure and important functions and
draw the labelled diagram?

OR

2. a) Describe is Endoplasmic reticulum? Write their structure and important functions and draw the labelled diagram?
b) Explain the kingdom of Animalia?
UNIT-II
3. Describe the structure of DNA \& RNA? 14M

OR
4. Define the proteins? Write the structure and functions of proteins? 14 M

UNIT-III

5. a) Explain the Oxidative phosphorylation? 7M
b) What is neuron? Write their structure with draw the labelled diagram?

7M

OR

6. Explain the reaction of Electron Transport Chain? 14M

UNIT-IV

7. a) Briefly describe the transcription and translation?
b) Write the types of cell division and signifience of cell division? 7M

OR
8. a) Explain Mendel dihybrid cross experiment? 7M
b) Describe the sequential steps in the replication of DNA? 7M

UNIT-V

9. a) Explain the Importance of DNA Cloning? 7M
b) Discuss the application of Recombinant DNA Technology? 7M

OR
10. a) Describe the types of Biosensors? 7M
b) Write short notes on restriction enzymes? 7M

Hall Ticket Number :

Code: 19A245T

R-19

I| B.Tech. II Semester Supplementary Examinations April 2023

Network Analysis and Synthesis

(Electrical and Electronics Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Explain the h-parameters of the Two-Port Network.

7M CO1 L2
b) Determine the h-parameters of the Two-Port Network shown below.

OR

2. a) Develop the relationship for ' Z ' parameters in terms of 'ABCD' parameters $7 \mathrm{M} \quad \mathrm{CO} 1 \quad \mathrm{L6}$
b) For a given 2-port network has the following Z-parameters

Network-1: $V_{1}=8 I_{1}+3 I_{2}$ and $V_{2}=4 I_{1}+7 I_{2}$
Determine its $A B C D$ parameters.
7M CO1 L3

UNIT-II

3. a) Determine the Laplace transform of the following
(i) $f(t)=t \sin 2 t$ (ii) $f(t)=3 t^{4}-e^{-t}+4 e^{-3 t} \cos 5 t-2 e^{-4 t} \sinh 3 t$

7M CO2 L3
b) Determine the Laplace transform of the waveform shown below.

4. a) Develop the step response of RLC series circuit using Laplace Transform approach.
b)

UNIT-III

5. a) Develop the dc transient response of RC series circuit using classical
differential equation solvation approach.

7M CO3 L6
b) A series RC circuit with $\mathrm{R}=5$ and $\mathrm{C}=0.01 \mu \mathrm{f}$ has a constant voltage $\mathrm{V}=50 \mathrm{v}$ applied at $\mathrm{t}=0$. Determine the expression for the current $\mathrm{i}(\mathrm{t})$ using classical differential equation approach.

7M CO3 L

OR

6. Develop the transient response of RLC series circuit for sinusoidal excitation using classical differential equation solvation approach.

UNIT-IV

7. a) Given that $v(t)=\left(5-10 \cos \left(\omega t+60^{\circ}\right)\right) \mathrm{V}$ and $\mathrm{i}(\mathrm{t})=(5+\mathrm{X} \cos \omega \mathrm{t}) \mathrm{A}$ where $\omega=100 \pi \mathrm{rad} / \mathrm{s}$ are the voltage across and current through circuit. If the average power delivered to the circuit is zero then Determine the value of ' X ' in amperes.

7M CO4
b) Determine the Fourier transform of the following functions
(i) $f(t)=e^{-a t}$ (ii) $f(t)=\delta(t)$
7M CO4

OR

8. Determine the exponential Fourier series expansion of the waveform below.

UNIT-V

9. a) Test the following function is Hurwitz or not?
$H(s)=s^{4}+3 s^{2}+2$
7M CO5
L5
b) Test the following function is positive real or not?
$F(s)=\frac{s^{2}+4}{s^{3}+3 s^{2}+3 s+1}$
7M CO5 L5

OR

10. a) Determine the Foster form-I realization for the function
$F(s)=\frac{(s+1)(s+3)}{(s+2)(s+4)}$
7M CO5 L3
b) Determine the Cauer form-II realization for the function
$F(s)=\frac{2(s+1)(s+4)}{(s+2)(s+6)}$
7M CO5

Code: 19AC42T

I| B.Tech. II Semester Supplementary Examinations April 2023

Numerical Methods and Transform Techniques

(Common to EEE \&ECE)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. Find the real root of $x e^{x}-\cos x=0$ using Bisection Method

Marks CO BL

OR
2. a) Find the real root of $\cos x=x e^{x}$ using False position Method

7M CO1
L3
b) Construct Newton's forward interpolating polynomial for the following data.

x	4	6	8	10
y	1	3	8	16

7M CO1
L3
UNIT-II
3. a) Obtain $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $\mathrm{x}=1.2$ from the following data

x	1	1.2	1.4	1.6	1.8	2	2.2
y	2.7183	3.3201	4.1552	4.9530	6.0496	7.3891	9.0250

b) Use Runge Kutta method to find y at $\mathrm{x}=0.1$ given that $\frac{d y}{d x}=x+y$ and $\mathrm{y}=1$ when $\mathrm{x}=0$

7M CO2
OR
4. Given $\frac{d y}{d x}=x^{2}+y, \quad y(0)=1$. Determine $\mathrm{y}(0.02), \mathrm{y}(0.04), \mathrm{y}(0.06)$ by Modified Euler's method.

14M CO2

UNIT-III

5. a) Expand $f(z)=\frac{1}{z^{2}-3 z+2}$ in the region i) $0<|z-1|<1$, ii) $1<|z|<2$

7M CO3 L2
b) Evaluate $\oint_{c} \frac{d z}{\left(z^{2}+4\right)^{2}}$ where $c:|z-i|=2$ using Cauchy Residue theorem.

OR
6. a) Find the Talor's series expansion of coshz about $z=\pi i$

7M CO3 L4
b) Determine the poles and residues at each pole of the function $f(z)=\frac{z+1}{z^{2}(z-2)}$

7M CO3 L3

UNIT-IV

7. a) Using Fourier integral, show that $e^{-a x}=\frac{2 a}{\pi} \int_{0}^{\infty} \frac{\cos \lambda x}{\lambda^{2}+a^{2}} d \lambda$

7M CO4 L3
b) Find the Fourier transform of $f(x)=\left\{\begin{array}{l}1,|x|<1 \\ 0,|x|>1\end{array}\right.$. and hence show that $\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}$

7M CO4 L1
OR
8. Find the Fourier sine transform of $e^{-|x|}$

14M CO4
L1

UNIT-V

9. If $f(z)=\frac{2 z^{2}+3 z+4}{(z-3)^{3}},|z|>3$ then find the values of $\mathrm{f}(1), \mathrm{f}(2), \mathrm{f}(3)$.
$14 \mathrm{M} \mathrm{CO5}$
L1
OR
10. Find $Z^{-1}\left(\frac{z}{(z-1)\left(z^{2}+1\right)}\right)$

Hall Ticket Number :

Code: 19A241T

|| B.Tech. || Semester Supplementary Examinations April 2023
 Electrical Machines-II
 (Electrical and Electronics Engineering)

Max. Marks: 70
Time: 3 Hours

Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Write the comparison between cage rotor and slip ring rotor with neat diagrams

6M 1 1
b) Obtain the relation between rotor input, rotor copper losses and rotor output in terms of slip(s).

8M 22

OR

2. a) Derive the expression for maximum torque developed by the $3-\mathrm{Ph}$ induction motor.
b) A 4 pole, $50 \mathrm{~Hz}, 3-\mathrm{Ph}$ IM has a starting torque of 1.6 and maximum torque of 2 times the full load torque at rated voltage and frequency. Determine the slip at maximum torque and speed at maximum torque.

UNIT-II

3. a) Explain the speed control of induction motor using Rotor resistance control.

6M 32
b) Two 50 Hz , 3- induction motor having 6 and 4-poles respectively are cumulatively cascaded. The 6 -pole motor being connected to the main supply. Determine frequencies of rotor currents and the slips referred to each stator field. If the set has slip of 2%.
$8 \mathrm{M} \quad 3 \quad 3$

OR

4. a) List the speed control methods of induction motor from (i) Stator side (ii) Rotor side.

4M 11
b) The rotor of a 4 pole, 50 Hz , SRIM has a resistance of $0.3 \mathrm{ohms} / \mathrm{ph}$ and runs at 1440 rpm at full load. Calculate the external resistance/ph which must be added to lower the speed to 1320 rpm , the torque being the same as before.

UNIT-III

5. Write a short note on (i) Capacitor Start Induction motor
(ii) Capacitor Start-Run Induction motor

14 M 22

OR

6. Explain the construction and working of shaded pole Induction motor. Mentions its applications.

14M 22

UNIT-IV

7. a) Derive the generalized expression for an induced emf/ph in 3-ph alternator having fractional pitch and distributed winding.

7M 52
b) A three phase, 50 Hz , star connected alternator has a double layer winding distributed in 36 slots, each slot containing 16 conductors. The flux per pole is 0.04 wb . Evaluate the terminal emf at open circuit.

7M 42

OR

8. a) Develop the expression for distribution factor of a 3-Ph synchronous machine from fundamental.

7M 62
b) Determine the distribution factor for 1-Ph alternator having 6 slots/pole
(i) When all the slots are wound.
(ii) When only four adjacent slots/pole are wound.

7M 42

UNIT-V

9. List the methods of synchronizing 3-Ph alternator to the infinite bus bar. Explain two bright and one dark lamp, synchroscope method with neat diagram.

14M 62
OR
10. a) Explain why the $3-\mathrm{Ph}$ synchronous motor is not a self-starting motor?

7M 52
b) Explain the effect of change of mechanical power input of alternator when it is connected to Infinite bus bar.

7M 62

