	Hall Ticket Number :														
	Codo: 104.242T	<u> </u>											R-19	>	
C	Code: 19A243T II B.Tech. II Ser	nester	Supr	hen	hent	arv	Fxa	mina	ntio	ns N	/av/h	ine	2024		
		ration				-					-		2027		
		(Electri										-			
	Max. Marks: 70	<i>.</i>											ne:3+		
,	Answer any five full qu	estions k	by ch	IOOSII	-	ne qı ****	uesti	on tr	om e	each	n unit (5	ox14:	= /0 M	arks)	
													Marks	СО	
1.	Explain the workin	a of sta					with	diad	irom	\ \ /h	at aro	tho			
1.	important constitue	-						ulay	lanı.	VVI	iat ale	uie	14M	CO1	
					OF										
2.	What are the facto	ors whic	h affe	ect th	he lo	catio	n of	site	of a	hyc	dro eleo	ctric			
	power plant												14M	CO1	
				L	UNIT										
3.	Derive an expressi			•		•		•			•				
	completely transpo line?	seu. vm	aus	line e	neci	or ea			e cap	acita	ance or	une	14M	CO2	
					OR	R									
4.	Discuss the conce	pt of geo	ometr	ic me	ean d	distar	nce.	How	is th	is co	oncept	use			
	to find the inductan	ce of co	mpos	ite co	ondu	ctor I	ine.						14M	CO2	
					JNIT-										
5.	Draw phasor diagi transmission line. I														
	in each case.		vhies	51011	5 101	Sent	ung	enu	volla	ye a		IEIII	14M	CO3	
					OF	2									
6.	Obtain A, B, C, D c	onstants	for a	a sho	rt tra	nsmi	ssior	n line					14M	CO3	
				ι	JNIT-	-IV									
7.	A string of eight su	•								•	•	•			
	the pin to earth cap capacitances that v				•							•	1414	CO4	
	capacitarices that v	voulu giv	eau			•	uisi	nbuu				y.	14101	004	
8.	Explain Ferranti eff	ect and i	oroxir	nitv e									14M	CO4	
	·	•		-	NIT-Y										
9.	A single core cable	e for use	on 1	L			yste	m ha	s cor	nduc	tor area	a of			
	0.645 cm ² and inte									•					
	the dielectric used stress in the ca														
	(iii) capacitance of	()											14M	CO5	
	· · ·				OR	. ,									
0.	Describe with a ne	at sketcl	h the	cons	struct	ion c	of a 3	3-cor	e bel	ted t	type ca	ble.			
	Discuss the limitation	ons of su	ich a	cabl									14M	CO5	
					*	**									

F	Iall	Ticket Number :													_	
C	ode	e: 19A244T		1		_]		J	1				R -	19		
•		II B.Tech. II Se	eme	ester							ons	Мау	/June 20	24		
			/ Г		Linear			-				. \				
	Мс	ax. Marks: 70	(E	leci	rical an	d Ele	ectro	nics	Eng	linee	ering)	Time:	3 Hou	irs	
		swer any five full o	quesi	tions	by choc	-		-	tion	from	ead	ch uni				
						:	***	**						Marks	со	BL
							NIT-									
1.	a)	Deduce the out formula	put (C1 ir	n the giv	en s	ignal	flov	/ gra	aph i	using	g Mas	on's gain			
		lonnula				H ₃										
				R,	1	G,	2	1	C1	0						
				U	G	1	A	4,								
					G	. Х	X	H ₂								
				0		2	Y			0						
				R ₂	1	H,		1	<i>G</i> ₂					8M	1	2
	b)	Derive the transf	er fur	nctio	n of arma	iture-	contr	ollec	l dc r	noto	r			6M	1	2
							OR									
2.	a)	Derive an expre	ssior	for	the trans	sfer f	uncti	on o	f an	arm	ature	e cont	rolled DC			
	Ь)	servo motor.	loon	ممط			ontro		tom					9M	1	2
	b)	Distinguish open	юор	and	ciosed ic	· ·	NIT-	-	tem					5M	1	2
3.	a)	Determine the	unde	erdar	nped res	L			conc	lor	der	contro	l system			
	,	subjected to unit			•	•							-)	8M	2	2
	b)	Obtain th ^e rise ti	me ,	peak	k time, m	aximı	um p	eak (overs	shoot	anc	l settli	ng time of			
		the unit step resp $G(s) = 36_{/} (s^{2}+2s+1)$		e of a	a closed l	oop c	contro	ol sys	stem	give	n by			6M	2	2
		« «					OR							OW	2	2
4.		Explain static err	or co	nsta	nts and g	enera	alize	d erro	or co	effici	ents			14M	2	1
						U	NIT-I	II								
5.		The characterist							•							
		2+a3s+a4=0. De coefficients in the											2	14M	3	2
							OR		- ,						-	
6.		Given ents in the	• cł	1)(S+	-3). Sketo	ch the	e roc	t loc	us p	lot a	nd c	omme	ent on the			
		stability. Also de				of K	for w	/hich	the	syste	em is	s stabl	e and the	14M	3	2
		frequency of sus	laine	u 050	Jilations.	U	νιτ-ι	V						1411	5	2
7.			ansfe	er fur	nction of t	L			ack s	syste	m is					
		The open loc $G(s) = K/S(S^{+2})(S^{+2})$,			,						
		By using Nyquist														
		a. Find the range			•		40 -									
		b. Find the valuec. Find the value		•	•									14M	3	2
			UT IX	101 p		girt	OR	00							U	-
8.		Explain bode plo	ts of	basio	c factors	of a t	ransf	er fu	nctio	n.				14M	3	1
		3. - 0				UN	IT–V									
9.					iction of a											
		The open loo $G(s) = K_V / S(S+X)$ specification : Kv	2)De =129	sign S-1	a suitabl	le lea	ad co	mpe	nsat	or to	me	et the	following	14M	4	2
				,	P.I0		OR								•	-
0.		Derive the trans	fer fu	uncti	on of La	g, Le		ind L	.ag-L	ead	com	pensa	ator using			
		electrical network	<											14M	4	2

Γ	На	Il Ticket Number :			
L		de: 19A245T	R-19	>	
		II B.Tech. II Semester Supplementary Examinations May/June	2024		
		Network Analysis and Synthesis			
		(Electrical and Electronics Engineering)			
		Til swer any five full questions by choosing one question from each unit (5x14 ********	me: 3 H = 70 M		
			Marks	СО	BL
1.	a)	UNIT–I Develop the relationship for 'Y' parameters in terms of 'h' parameters	7M	CO1	L6
	b)	Determine the h-parameters with the following data:			_
		i) With output terminals shorted			
		V1=25V, I1=1A, I2=2A ii) With output terminals opened			
		V1=10V, V2=50V, I2=2A	7M	CO1	L3
		OR			
2.	a)	Explain the Z-parameters of the Two-Port Network.	7M	CO1	L2
	b)	Explain the Y-parameters of the Two-Port Network.	7M	CO1	L2
		UNIT-II			
3.	,	List out the advantages of Laplace transform approach.	7M	CO2	L1
	b)	Determine the inverse Laplace transform of the following functions. $(S+1)$			
		i) $H(S) = \frac{(S+1)}{S(S+2)}$ (ii) $F(S) = \frac{S^2}{(S^2+1)^2}$	7M	CO2	L3
		OR		002	20
4.	a)	Determine the Laplace transform of the following			
		(i) $f(t) = t\sin 2t$ (ii) $f(t) = 3t^4 - e^{-t} + 4e^{-3t}\cos 5t - 2e^{-4t}\sinh 3t$	7M	CO2	L3
	b)	Determine the Laplace transform of the non-periodic square wave of		co^{2}	10
		amplitude 'A' and time period of 'T'sec.	7 111	CO2	LS
5.		Determine the current i(t) for t>0 in a series RLC circuit having Vs=100V,			
		R=10 , L=0.5H and C=1 μ F using classical differential equation solvation			
		approach.	14M	CO3	L3
•	、	OR			
6.		Explain the importance of Initial Conditions. Define the time constant of RL and RC series circuit.	10M	CO3	L2
	b)		4M	CO3	L1
7.		In a two-element series network, voltage v(t) is applied, which is given as			
		$v(t) = 50 + 50 \sin 5000t + 30 \sin 10000t$, the resultant current is given as			
		$i(t) = 11.2 \sin(5000t+63.4^\circ) + 10.6 \sin(10000t+45^\circ)$. Determine the network		004	1.0
		elements and the power dissipated in the circuit. OR	14M	CO4	L3
8.		Explain all symmetry properties such as even function, odd function and			
0.		halfwave symmetry of the waveform with examples.	14M	CO4	L2
		UNIT-V			
9.	a)	Determine the Foster form-I realization for the function			
		$Z(s) = \frac{3(s+1)(s+4)}{(s+3)(s+5)}$			
			7M		L3
	b)	List out the necessary conditions for a driving point function?	7M	CO5	L1
10	a)	OR Determine the Cauer form-II realization for the function			
	4)				
		$F(s) = \frac{2(s+1)(s+3)}{s(s+2)}$	7M	CO5	L3
	b)	List out the necessary conditions for a Transfer function?	7M	CO5	L1

	ŀ	Hall Ticke	et Num	ber :									R-19		
	Co	o de: 19A B.		ll Ser	nester	Supp	lemer	ntary E	xam	inatic	ons May	/ / Jur	ne 2024		
			Ν	ume	rical						echni	ques			
		1ax. Mar nswer an		ull que	estions	•	ommon oosing				n each u	ınit (5×	Time: 3 Ho 14 = 70 Ma		
													Marks	CO	BL
1.	a)	Find the		ot of	³ 2				Den		1 oth o d		714	004	
1.	a) b)	Find the Find the					Ŭ		•		lethod		7 IVI	CO1	L3
	D)	X					1	2	•		3]			
		Y		1			2	1			10		7M	CO1	L1
			U				OR			-1		1			
2.	a)	Find the	e real ro	ot of 2	$3x = \cos \theta$	sx+1u	using Ne	ewton F	Raphs	on M	ethod		7M	CO1	L3
	b)	Calculat										1			
		X f(x)	1	2	3 27			5	6	7	8		714	CO1	L3
		f(x)	<u> </u>	Ö	21	0	54 12	25 2	216	343	512		7 101	COT	LS
							UNIT-I	I							
3.	a)	Comput	te $\frac{dy}{dx}$ ar	nd $\frac{d^2}{dx}$	$\frac{y}{2}$ at x=	=1 from	n the fol	lowing	data.						
		X	1		2		3	4	5		6				
		У	1		8	[27	64	12		216			CO2	L3
	b)	Solve $\frac{d}{d}$	$\frac{y}{x} = x + $	y ² , y	(1) = 0	to find	y at x=().2 by F	Runge	-Kutta	method	of fou			
		order.											7M	CO2	L3
		1.		2			OR								
4.		Find $\frac{dy}{dx}$	and $\frac{a}{a}$	$\frac{y}{lx^2}$ at	: i)x=1.1	1 ii)x=1	1.6					_			
		x	1.0		.1	1.2	1.3	1.4		1.5	1.6				
		У	7.989	8.4	403 8	3.781	9.129	9.45	51 9	.750	10.031		14M	CO2	L1
							UNIT-I	11							
5.		Expand	f(z) =	$\frac{1+2}{7^2+3}$	$\frac{z}{z^3}$ in a s	series	of +ve a	and –ve	e pow	ers of	Z		14M	CO3	L2
				~ · ·	~		OR								
6.		Obtain t	he Tayl	or's s	eries e	xpansi	on of f	$z(z) = -\frac{1}{z}$	$\frac{e^z}{(z+1)}$	abou	it z=2		14M	CO3	L3
								-	. ,						_0
													Page	1 of 2	

OR

Find the finite fourier sine and cosine transform of $f(x) = \begin{cases} 1, 0 < x < \frac{f}{2} \\ -1, \frac{f}{2} < x < f \end{cases}$ 14M CO4 L1 7.

8. Solve the integral equation
$$\int_{0}^{\infty} f(x) \cos r dx = \begin{cases} 1 - r, 0 \le r \le 1 \\ 0, r > 1 \end{cases}$$
 and hence
evaluate
$$\int_{0}^{\infty} \frac{\sin^{2} t}{t^{2}} dt$$
 14M CO4 L3
UNIT-V
9. Show that $Z\left(\frac{1}{n!}\right) = e^{\frac{1}{z}}$ and hence evaluate $Z\left(\frac{1}{(n+1)!}\right)$ and $Z\left(\frac{1}{(n+2)!}\right)$ 14M CO5 L2
OR

10. Find
$$Z^{-1}\left(\frac{4z^2-2z}{z^3-5z^2+8z-4}\right)$$

END

14M CO5 L1

				r				1	-	1						
	ł	Hall Ticket Number :												R-19		
	С	ode: 19A242T		<u> </u>							<u> </u>					
		ll B.Tech. II Sem	neste	er Su	ipplei	ment	ary E	xam	inat	tions	s Ma	ıy / Ju	Jne	2024		
			. – .		lectro						,					
	κ.	1ax. Marks: 70	(Ele	ctric	al and	d Elec	troni	cs Er	igine	eerin	g)		Tin	ne: 3 Ho	N Irc	
		nswer any five full qu	estioi	ns by	/ choo	sing o	ne qu	estio	n fro	med	uch u	unit (5)				
		, , ,		,		U	*****					,			,	
														Marks	СО	BL
					U	NIT–I										
1.	a)	Three equal point cha	•								•					
		4m. Determine the mathematical three thre	agnitt	ue a		ection		eatt	ne va	acant	COIN	ernav	ing	8M	CO1	L3
	b)	State and explain the	gaus	s law	in an e	electro	static	field.						6M	CO1	L2
			•			OR										
2.	a)	Evaluate the work dor			• •	point c	harge	q fron	n a to	b alo	ong ra	adial p	ath			
		centered at line charg		-										8M	CO1	L3
	b)	List out any two applic	cation	is of	- -									6M	CO1	L1
3.	a)							.,								
0.	aj	Show that the Torque	on a	phys	ical dip	ole p	in a ur	niform) elec	ctric fi	eld <i>E</i>	c is giv	/en			
		by $p X E$												8M	CO1	L3
	b)	Evaluate the torque f		•		•	•			ectric	; fielc	E=50	000	CM	001	10
		(Z a _x -a _y -a _z) separated	a by c	ornin			axis at	ongi	1.					6M	CO1	L3
4.	a)	Derive the expression	for th	he ca			co-axia	al cat	ole.					8M	CO2	L3
	b)	The radius of two sph			•					pheri	ical c	onden	ser	0		
	,	is 45pF.If the outer sp			-		-	-		-				6M	CO2	L3
					UN	IIT-III										
5.	a)	State and explain am												6M	CO3	L2
	b)	Derive the expression Using ampere's circui		•	netic fie	eld inte	ensity o	of an	Infin	ite sh	neet d	of curre	ent	8M	CO3	L3
				vv.		OR								Olvi	000	LU
6.	a)	Derive the expression	for v	ector			tential	from	Biot-	Sava	arts's	law.		8M	CO3	L3
	b)	Given the magnetic			•	•							ntal			
		magnetic flux crossing					-		<u>.</u> D	Clon			nai	6M	CO3	L3
			y une	Suna		/2, <u>-</u> IIT–IV								OIVI	003	LJ
7.	a)	Two long parallel wir	es in	air (L		rying o	currer	nt I₁ :	and I	₂ in t	the sa	me			
	,	direction the field inter	nsity I	H at r	nid awa	ay is 7	5AT/n									
		unit length is 0.35mN.										.,		10M	CO3	L4
	b)	Show that force experimagnetic field is zero.		ed by	the cu	rrent c	arrying	g elen	nent	is pla	ced I	n unifo	orm	4M	CO4	L2
						OR									001	
8.		Derive an expression	for to	orque			carryi	ng lo	op pl	aced	in a	magne	etic			
		field.						•				-		14M	CO3	L3
					L	VIT-V										
9.	a)	Differentiate motional					•							7M	CO5	L1
	b)	Derive the integral for law.	m of	time	varying	j Maxv	ell ed	uatior	1 fror	n am	pere':	s circu	ital	7M	CO5	L3
						OR								7 111	550	20
10.		Explain Faraday's lav	vs of	Elect			nductio	on an	d De	rive t	he ex	kpress	ion			
		for static induced emf			-	luced e	emf.							14M	CO5	L2
						E	ND	:								

\sim		Ticket Number : R-1	9	
Cc	bde	II B.Tech. II Semester Supplementary Examinations May/June 202	24	
		Electrical Machines-II	2-7	
		(Electrical and Electronics Engineering)		
	-	ax. Marks: 70 Time:		
1	Ans	swer any five full questions by choosing one question from each unit (5x14 = 70 ********) Mark	S)
			Marks	со
1. ;	2)	UNIT–I Prove that maximum torque developed by the 3-Ph induction motor does not		
1.	a)	depend on the rotor circuit resistance?	7M	2
ļ	b)	A 3-phase induction motor runs at 1440 rpm at full load when supplied power from 50 Hz, 3-phase line. Calculate:		
		(i) The number of poles. (ii) Slip of full load.		
		(iii) Speed of the rotor field w.r.t rotor. (iv) Speed of the rotor field w.r.t stator.	7M	1
		OR		
2.		Classify and explain various types of armature windings of synchronous		
		machine with its advantages.	14M	1
3.		UNIT-II A cage induction motor when started by means of a star-delta starter takes		
5.		190% of full load line current and develops 40% of full load torque at starting. Determine the starting torque and current in terms of full load values, if an auto		
		transformer with 80% tapping were employed.	14M	3
		OR		
4. ;	a)	Explain the working principle of Induction generator.	7M	2
	b)	Explain the conducting procedure of Blocked rotor test on three phase		
		induction motor.	7M	1
5.		UNIT-III Evoloin the construction and working of Split Dhase and Consultar Start Bun		
5.		Explain the construction and working of Split Phase and Capacitor Start-Run Induction motor. Mentions its applications.	14M	2
		OR		
6.		The following test results are obtained in case of a 4 pole, 50Hz, 220V, 1-Ph IM:		
		No load : 220V 5.8A 310W		
		Blocked rotor: 120V 13.8A 530W		
		Stator winding resistance = 1.4 ; The full load speed of the motor is 1440rpm.	4 4 5 4	4
		Determine the equivalent circuit of the motor.	14M	4
7. :	a)	Explain the effect of load power factor on armature reaction of 3-ph alternator.	8M	5
	а) b)	A 3 ph y connected, 1000KVA, 11KV alternator has rated current of 52.5A.	OW	U
	,	The ac resistance of the winding is 0.45 /ph. The test results are given as		
		OC test: $I_f = 12.5A$, voltage between lines = 422V		
		SC test: $I_f = 12.5A$, line current = 52.5A	C M	_
		Compute the synchronous reactance per phase. OR	6M	5
	a)	Compare the salient features of projecting pole rotor and round rotor.	8M	1
8	b)	Find the pitch factor for the winding of 36 slots, 4 poles, coil span 1 to 8.	6M	1
	'			
		Describe how the synchronous motor can operate as synchronous condenser	7M	6
	a)			
9. :	a) b)	A 400V, 50Hz, 33.7KW, 3 ph star connected SM has a full load efficiency of		
9.	, í	88%. The synchronous impedance of motor is (0.2 +j1.6) /ph. If the motor	71.4	А
9. :	, í	88%. The synchronous impedance of motor is $(0.2 + j1.6)$ /ph. If the motor excitation is adjusted to give a leading p.f of 0.9. Calculate line induced e.m.f.	7M	4
9.	b)	88%. The synchronous impedance of motor is (0.2 +j1.6) /ph. If the motor excitation is adjusted to give a leading p.f of 0.9. Calculate line induced e.m.f. OR	7M	4
9. :	b)	88%. The synchronous impedance of motor is $(0.2 + j1.6)$ /ph. If the motor excitation is adjusted to give a leading p.f of 0.9. Calculate line induced e.m.f.	7M 7M	4 5
9. :	b)	 88%. The synchronous impedance of motor is (0.2 +j1.6) /ph. If the motor excitation is adjusted to give a leading p.f of 0.9. Calculate line induced e.m.f. OR Discuss the need for connecting the alternators in parallel. Mention the 		