Code: 19A243T

II B.Tech. II Semester Supplementary Examinations July/August 2022

Generation and Transmission of Electric Power

(Electrical and Electronics Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$

Marks CO | Blooms |
| :---: |
| Level |

UNIT-I

1. Write the advantages, disadvantages and applications of hydroelectric power plant.

OR
2. Discuss why the overall efficiency of thermal power plant is very low.

```
UNIT-II
```

3. Derive an expression for inductance of a single phase transmission line.

OR

4. Derive expression for line to line capacitance and line to neutral capacitance of a single phase line.

UNIT-III

5. Explain the effect of load power factor on the transmission efficiency and voltage regulation of transmission line.

OR

6. How are transmission lines classified? Obtain the relation between the sending end and receiving end voltages and current of a medium line using nominal-п representation.

UNIT-IV

7. An overhead transmission line at a river crossing is supported from two towers at heights of 40 m and 90 m above water level, the horizontal distance between the towers being 400 m . If the maximum allowable tension is 2000 kg , find the clearance between the conductor and water at a point midway between the towers. Weight of conductor is $1 \mathrm{~kg} / \mathrm{m}$.

OR

8. A transmission line has a span of 150 m between level supports. The conductor has a cross-sectional area of $2 \mathrm{~cm}^{2}$. The tension in the conductor is 2000 kg . If the specific gravity of the conductor material is $99 \mathrm{gm} / \mathrm{cm}^{3}$ and wind pressure is $15 \mathrm{~kg} / \mathrm{m}$ length, calculate the sag. What is the vertical sag?

UNIT-V

9. A single core cable of conductor diameter 2 cm and lead sheath of diameter 5.3 cm is to be used on a 66 kV , 3-phase system. Two intersheaths of diameter 31 cm and 42 cm are introduced between the core and lead sheath. If the maximum stress in the layers is the same, find the voltages on the intersheaths.

OR

10. Describe with a neat sketch the construction of a 3-core belted type cable. Discuss the limitations of such a cable.

Code: 19A244T

|| B.Tech. II Semester Supplementary Examinations July/August 2022

Linear Control Systems

(Electrical and Electronics Engineering)
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$

Marks CO | Blooms |
| :---: |
| Level |

UNIT-I

1. a) Derive an expression for the transfer function of an armature controlled DC servo motor.

8M $\quad 1$
b) Distinguish open loop and closed loop control system

6M $\quad 1$
OR
2. a) Explain the effect of feedback in reducing parameter variations.
$8 \mathrm{M} \quad 1$
b) Derive an expression for the transfer function of a Field controlled DC servo motor.
$6 \mathrm{M} \quad 1$

UNIT-II

3. Determine the time response of a second order system with a unit step input. Also deduce the steady state error value

OR

4. Obtain the rise time, peak time, maximum peak overshoot and settling time of the unit step response of a closed loop control system given by $G(s)=36 /\left(s^{2}+2 s+36\right)$

14M 2

b) Discuss the effect of adding a pole/zero to the open loop transfer function and its effect on the root locus of a system

7M 3

OR

6. a) Explain the construction rules for root locus technique
$7 \mathrm{M} \quad 3$
b) Test the stability of the system with the following characteristic equation by Routh's test $s^{6}+2 s^{5}+8 s^{4}+20 s^{2}+16 s+16=0$

7M 3

UNIT-IV

7. the st plot for a system with loop trans iction
 stable.

OR

8. Explain bode plots of basic factors of a transfer function.

UNIT-V

9. Derive the transfer function of Lag, Lead and Lag-Lead compensator using electrical network

14M 4

OR

10. a) A continuous time system has a transfer function of $\mathrm{T}(\mathrm{s})=\left(\mathrm{s}^{2}+3 \mathrm{~s}+3\right) /\left(\mathrm{s}^{3}+2 \mathrm{~s}^{2}+3 \mathrm{~s}+1\right)$. Construct a state model of the system
b) What do you understand by state transition matrix? State and prove its properties
Hall Ticket Number :
R-19 R-19
Code: 19AC44TII B.Tech. II Semester Supplementary Examinations July/August 2022
Life Sciences for Engineers
(Common to EEE \& ECE)
Max. Marks: 70 Time: 3 HoursAnswer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)$* * * * * * * * *$

UNIT-I

1. a) Describe is Nucleus? Write their structure and important functions and draw the labelled diagram? 7M CO1
b) Write about the Characteristics of Cells? 7M CO1
OR
2. Explain the comparison of biological organisms with manmade systems? 14M CO1
UNIT-II
3. Describe are the Carbohydrates? Write the types and functions of carbohydrates? 14M CO2 2
OR4. Explain the Hemoglobin and Write the functions of Hemoglobin?14M CO2
UNIT-III
4. Explain the reaction of Krebs/TCA cycle?14M CO3
OR
5. Describe the structure of neuron and types? Give an account of the
6. Describe the structure of neuron and types? Give an account of theSynaptic and neuromuscular junctions?
14M CO3 4

14M CO3
UNIT-IV7. Define the genetics? Explain the Mendel's Laws?14M C04
OR
8. Describe the meiosis cell division process? 14M C04
UNIT-V
9. Describe the Recombinant Vaccines? 14M CO5 2
OR
10. Explain the various process of recombinant DNA technology?14M CO5 Synaptic and neuromuscular junctions?
UNIT-IV
7. Define the genetics? Explain the Mendel's Laws?
OR
8. Describe the meiosis cell division process?

Hall Ticket Number

R-19

Code: 19A245T

|| B.Tech. II Semester Supplementary Examinations July/August 2022
Network Analysis and Synthesis
(Electrical and Electronics Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Explain the Z-parameters of the Two-Port Network.

7M CO1
b) Determine the Z-parameters of the Two-Port Network shown below.

OR

2. a) Explain the Series connection of Two Two-Port Networks.

7M CO1
b) Two, 2-port networks are connected in series. The Z-parameters of the networks are given below:
$Z_{A}=\left[\begin{array}{cc}11 & 3 \\ 4 & 5\end{array}\right] Z_{B}=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$
Determine Y -parameters of the combination.

UNIT-II

3. a) Determine the Laplace transform of the following
(i) $f(t)=t s i n 2 t$
(ii) $f(t)=3 t^{4}-e^{-t}+4 e^{-3 t} \cos 5 t-2 e^{-4 t} \sinh 3 t$
7M CO2
b) Determine the Laplace transform of the waveform shown below.

4. a) Explain Initial value and Final value Theorem.

7M CO2 L2
b) State and prove Initial Value and Final value Theorem for the function $f(t)=2+e^{-3 t} \cos 2 t$

7M CO2

UNIT-III

5. a) Explain the importance of Initial Conditions.
b) Define the time constant of RL and RC series circuit.
10M CO3

OR
6. a) Develop the transient response of RL series circuit for sinusoidal excitation using classical differential equation solvation approach.
b) A Series RL circuit with $R=50$ and $L=0.2 \mathrm{H}$, has a sinusoidal voltage $\mathrm{v}(\mathrm{t})=$ $150 \sin 500 \mathrm{t}$ applied at $\mathrm{t}=0$. Determine the current $\mathrm{i}(\mathrm{t})$ for $\mathrm{t}>0$ using classical differential equation approach.
$7 \mathrm{M} \quad \mathrm{CO} 3$
L3

UNIT-IV

7. a) Explain all symmetry properties such as even function, odd function and halfwave symmetry of the waveform with examples.
b) Determine the value of R, if the average power dissipated is 1000 W if the
voltage has the following Fourier series $v(t)=200 \sin \omega t+100 \sin 3 \omega t+50$ $\sin 5 \omega t$.

7M CO4

OR

8. a) Determine the Fourier transform of the following functions
(i) $f(t)=1$
(ii) $f(t)=u(t)$
7M CO4
L3
b) Determine the Fourier Transform of the waveform shown below.

9. a) List out the necessary conditions for a driving point function?

7M CO5
b) Draw the pole-zero diagram of the following driving point impedance function

$$
Z(s)=\frac{s^{2}+5 s+6}{s^{3}+6 s^{2}+9 s}
$$

7M CO5

OR

10. a) Test the following function is Hurwitz or not? $\quad H(s)=s^{5}+s^{3}+s$

7M CO5
L5
b) Test the following function is positive real or not?
$F(s)=\frac{s+6}{s^{2}+4 s+2}$
7M CO5
L5

Code: 19AC42T

|| B.Tech. II Semester Supplementary Examinations July/August 2022
Numerical Methods and Transform Techniques
(Common to EEE \& ECE)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
Marks CO

UNIT-I

1. Find the real root of $x^{3}-x-1=0$ using Bisection Method
2. a) Find the real root of $x^{3}-2 x-5=0$ using Bisection Method

7M CO1
b) Find $\mathrm{f}(3)$ using Lagrange's formula for the following data

x	0	1	2	5
$\mathrm{f}(\mathrm{x})$	2	3	12	147
		UNIT		

3. Evaluate $\int_{0}^{6} \frac{1}{1+x^{2}} d x$ using i)Trapezoidal rule ii)Simpson's $1 / 3$ rule,
iii) Simpson's $3 / 8$ rule and compare with exact solution

14M CO2

OR

4. a) Compute the value of $\int_{0.2}^{1.4}\left(\sin x-\log x+e^{x}\right) d x$ using Simpson's $3 / 8$ rule
b) Using Modified Euler's method, find $y(0.2)$ given $y^{\prime}=y+e^{x}, y(0)=0$.

UNIT-III

5. Use Cauchy Residue theorem to find $\oint_{c} \frac{4-3 z}{z(z-1)(z-2)} d z$, where ' c ' is the circle $|z|=\frac{3}{2}$
6. Find Taylor's expansion of $f(z)=\frac{1}{(z+1)^{2}}$ about the point $z=-i$

UNIT-IV

7. Find the Fourier transform of $f(x)=\left\{\begin{array}{l}1-x^{2},|x| \leq 1 \\ 0,|x|>1\end{array}\right.$. Hence evaluate $\int_{0}^{\infty} \frac{x \cos x-\sin x}{x^{3}} \cos \frac{x}{2} d x$

OR

8. Find the Fourier cosine transform of $e^{-x^{2}}$

UNIT-V

9. Use Convolution theorem to evaluate $Z^{-1}\left(\frac{z^{2}}{(z-a)(z-b)}\right)$

OR

10. If $U(z)=\frac{2 z^{2}+5 z+14}{(z-1)^{4}}$ then evaluate u_{2} and u_{3}

II B.Tech. II Semester Supplementary Examinations July/August 2022
Electrical Machines-II
(Electrical and Electronics Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Describe the construction of a 3-phase cage type induction motor with neat sketch.
b) A 3-phase, $50 \mathrm{~Hz}, 4$-pole induction motor has a slip of 4%.

Calculate speed of the motor and frequency of rotor e.m.f.
6M 2
OR
2. a) With neat sketch, explain how rotating magnetic field is produced in a three phase induction motor.

8M
b) Explain the phenomenon of crawling and cogging. Also explain it effect.

6M 1

UNIT-II

3. a) Explain the working principle of Induction generator.

7M
2
b) Explain the conducting procedure of Blocked rotor test on three phase induction motor.

OR

4. a) Explain the principle of operation of an induction generator.
b) The rotor resistance and standstill reactance per phase of a 3 phase slip-ring induction motor are 0.05 and 0.2 respectively. What should be the value of external resistance per phase to be inserted in the rotor circuit to give maximum torque at starting?

UNIT-III

5. Explain the construction and working of Split Phase and Capacitor Start-Run Induction motor. Mentions its applications.

OR

6. a) Explain the construction of 1-Ph Induction motor using neat diagrams.
b) Write a short note on Permanent capacitor Induction motor. Mentions its applications.

UNIT-IV

7. a) Explain how the harmonics in the generated EMF can be suppressed in synchronous machines.
b) A $3-\mathrm{Ph}, 50 \mathrm{~Hz}, 8$ pole alternator has a star connected winding with 120 slots and 8 conductors/slot. The flux per pole is 0.05 wb , sinusoidally distributed. Determine the phase and line voltages. Let the winding factor as 0.956 .

7M 4

OR

8. Classify and explain various types of armature windings of synchronous machine with its advantages.

UNIT-V

9. a) Discuss the need for connecting the alternators in parallel. Mention the conditions for parallel operation of alternators.
b) Two similar turbo alternators are rated at 25 MW each. They are running in parallel. The speed-load curves of the driving turbines are such that the frequency of alternator-1 drops uniformly from 50 Hz no load to 48 Hz on full load and that alternator-2 from 50 Hz to 48.5 Hz . How will the two machines share a load of 30 MW ?

7M 4

OR

10. a) Discuss the effect of change of excitation of alternator when it is connected to Infinite bus bar.
b) Two 15KVA, 400V, 3-Ph alternators in parallel supply a total load of 25 KVA at 0.8 p.f lagging. If one alternator shares half the power at UPF, determine the p.f and KVA shared by other alternator.
