II B.Tech. II Semester Supplementary Examinations November 2023

Linear Control Systems

(Electrical and Electronics Engineering)

Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

OR

4. A unity feedback system is characterized by the open loop transfer function $G(s)=1 / s^{*}(0.5 s+1)(0.2 s+1)$. Determine the steady state error for unit step, unit ramp and unit acceleration inputs.

UNIT-III

5. Find the roots of the characteristic equations for systems whose open loop transfer functions are given below:
i) $G(s) H(s)=1 /[(s+2)(s+4)]$
ii) $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=1(\mathrm{~s}+3) /[\mathrm{s}(\mathrm{s}+3)(\mathrm{s}+8)]$
iii) $G(s)=9 /\left[s 2^{*}(s+2)\right]$.

OR

6. oot locus of the system whose open loop transfer function Sketch the $(\mathcal{Y}+2)(\mathrm{S}+4)$. Find the value of K so that the damping ratio of the
$G(s)=K / \mathrm{S}$ closed loop system is 0.5

UNIT-IV

7. Sketch the bode plot of a feedback system which has
$G(S) H(S)=100^{*}(S+4) /\left[S^{*}(S+0.5) *(S+10)\right]$.
Also comment on the stability of the system.
OR
8. the plot for a system with loop transfer function

$G(\mathrm{~S}) H(\mathrm{~S})$
Find the range of value of K for

UNIT-V

9. Explain design of the basic lead compensator using Bode plot

OR

10. Obtain the state space representation of the field controlled and Armature controlled DC motor
\square

Code: 19AC44T

\square
II B.Tech. II Semester Supplementary Examinations November 2023

Life Sciences for Engineers

(Common to EEE \& ECE)

Max. Marks: 70 Time: 3 Hours
UNIT-I1. a) Explain the hierarchy of classification?7M CO12
b) Describe is Ribosomes? Write their structure and important functions and draw the labelled diagram? 7M CO1 2
OR
2. Describe meant by classification? Write the importance of Classification? 14M CO1 2
UNIT-II
3. Describe nucleic acids? Write the structure and functions of nucleic acids? $14 \mathrm{M} \quad \mathrm{CO} 2$ 2
OR
4. Describe the Biomolecules and write functions and types of biomolecules? 14M CO2 4
UNIT-III5. Explain the reaction of Krebs/TCA cycle?14M CO32
OR6. Describe the structure of neuron and types? Give an account of theSynaptic and neuromuscular junctions?
14M CO3 47. Describe the meiosis cell division process?14M C0428. Explain the Process of DNA Replication in prokaryotic and eukaryoticanimals?14M C042
UNIT-V
9. Explain the Transgenic species and process in animals? 14M CO5 2
ORExplain the various process of recombinant DNA technology?14M CO52

Hall Ticket Number :

Code: 19A245T

R-19

II B.Tech. II Semester Supplementary Examinations November 2023

Network Analysis and Synthesis

(Electrical and Electronics Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

Marks CO BL

UNIT-I

1. a) Explain the Parallel connection of Two Two-Port Networks.

7M CO1 L2
b) Two, 2-port networks are connected in parallel. The Y-parameters of the networks are given below:
$Y_{A}=\left[\begin{array}{cc}\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2}\end{array}\right] Y_{B}=\left[\begin{array}{cc}\frac{1}{5} & -\frac{1}{10} \\ -\frac{1}{10} & \frac{3}{10}\end{array}\right]$
Determine Z-parameters of the combination.

OR

2. a) Explain the Cascade connection of Two Two-Port Networks.

7M CO1 L2
b) Two, 2-port networks are connected in cascade. The Z-parameters of the networks are given below:
Network-1: $\mathrm{V}_{1}=8 \mathrm{I}_{1}+3 \mathrm{I}_{2}$ and $\mathrm{V}_{2}=4 \mathrm{I}_{1}+7 \mathrm{I}_{2}$
Network-2: $\mathrm{V}_{1}=2 \mathrm{I}_{1}+\mathrm{I}_{2}$ and $\mathrm{V}_{2}=\mathrm{I}_{1}+2 \mathrm{I}_{2}$
Determine the ABCD parameters of the overall network.
7M CO1 L3

UNIT-II

3. a) Determine the Laplace transform of the following
(i) $f(t)=t \sin 2 t$
(ii) $f(t)=3 t^{4}-e^{-t}+4 e^{-3 t} \cos 5 t-2 e^{-4 t} \sinh 3 t$
7M CO2 L3
b) Determine the Laplace transform of the waveform shown below.

7M CO2 L3
OR
4. Develop the step response of RL series circuit using Laplace Transform approach.

14M CO2 L3

UNIT-III

5. Develop the dc transient response of RLC series circuit using classical differential equation solvation approach.
6. a) Explain the importance of Initial Conditions. 10M CO3 L2
b) Define the time constant of RL and RC series circuit.

4 M CO 3

UNIT-IV

7. In a two-element series network, voltage $v(t)$ is applied, which is given as $\mathrm{v}(\mathrm{t})=50+50 \sin 5000 \mathrm{t}+30 \sin 10000 \mathrm{t}$, the resultant current is given as $i(t)=11.2 \sin \left(5000 t+63.4^{\circ}\right)+10.6 \sin \left(10000 t+45^{\circ}\right)$. Determine the network elements and the power dissipated in the circuit.

14M CO4

OR

8. a) List out the properties of Fourier transforms. 7M CO4
b) Determine the Fourier Transform of the periodic waveform shown below.

UNIT-V

9. a) Determine the Foster form-II realization for the function
$Z(s)=\frac{2(s+1)(s+3)}{s(s+2)(s+4)}$
7M CO5 L3
b) Determine the Cauer form-II realization for the function
$F(s)=\frac{2(s+1)(s+3)}{s(s+2)}$
7M CO5 L3

OR

10. a) Test the following function is Hurwitz or not?
$H(s)=s^{5}+3 s^{4}+5 s^{3}+9 s^{2}+10 s+27$
7M CO5 L5
b) Test the following function is positive real or not?

$$
F(s)=\frac{s^{2}+5 s+6}{s^{3}+6 s^{2}+9 s}
$$

Hall Ticket Number :

Code: 19AC42T

II B.Tech. II Semester Supplementary Examinations November 2023

Numerical Methods and Transform Techniques

(Common to EEE \&ECE)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

Marks CO BL

1. Estimate the value of $f(22)$ and $f(42)$ from the following data

x	20	25	30	35	40	45
$f(x)$	354	332	291	$26-$	231	204

OR
2. a) Find the real root of $x \log _{10} x=1.2$ using False position Method

7M CO1 L3
b) Using lagrange's interpolation formula find y at $\mathrm{x}=10$ given that

x	5	6	9	11
y	12	13	14	16

7M CO1 L3
3. a) Compute $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $\mathrm{x}=1$ from the following data.

x	1	2	3	4	5	6
y	1	8	27	64	125	216

7 M CO2 L3
b) Solve $\frac{d y}{d x}=x+y^{2}, y(1)=0$ to find y at $\mathrm{x}=0.2$ by Runge-Kutta method of fourth order.

7M CO2 L3

OR

4. a) Estimate $\int_{0}^{1} \frac{1}{1+x^{2}} d x$ by using Simpon's $1 / 3$ rule

7M CO2 L2
b) Solve $y^{\prime}=3 x+y^{2}, y(0)=1$ using Taylor's series method and compute $y(0.1) \quad 7 \mathrm{M} \quad \mathrm{CO} 2 \quad \mathrm{~L} 3$

UNIT-III

5. a) Find the Laurent series expansion of the function

$$
f(z)=\frac{z^{2}-6 z-1}{(z-1)(z-3)(z+2)} \text { in the region } 3<|z+2|<5
$$

$7 \mathrm{M} \quad \mathrm{CO} 3 \quad \mathrm{~L} 4$
b) Find the residues of $f(z)=\frac{z^{2}-2 z}{(z+1)^{2}\left(z^{2}+1\right)}$ at each pole

7M CO3 L1
OR
6. Find the Laurent series of $f(z)=\frac{z+3}{z\left(z^{2}-z-2\right)}$ in the region i) $|z|<1$, ii) $1<|z|<2$ iii) $|z|>2$

14M CO3 L4

UNIT-IV

7. Find the Fourier transform of $e^{-a^{2} x^{2}}, a<0$.Hence deduce that $e^{\frac{-x^{2}}{2}}$ is self reciprocal in respect of Fourier transform.

OR

8. a) Find the Fourier sine transform of $2 e^{-5 x}+5 e^{-2 x}$
b) Find the Fourier cosine transform of $f(x)=\left\{\begin{array}{l}x, 0<x<1 \\ 2-x, 1<x<2 \\ 0, x \geq 2\end{array}\right.$

7M CO4 L1

7M CO4 L1

UNIT-V

9. Find inverse Z transform of $\frac{2 z^{2}+3 z}{(z+2)(z-4)}$

OR

10. a) Find $Z\left(n^{2} a^{n}\right)$ 7M CO5 L1
b) Find $Z\left(e^{t} \sin 2 t\right)$ $7 \mathrm{M} \mathrm{CO5}$ L1

Code: 19A241T

II B.Tech. II Semester Supplementary Examinations November 2023

Electrical Machines-II
 (Electrical and Electronics Engineering)

1. A three phase, $400 \mathrm{~V}, 50 \mathrm{~Hz}$ induction motor takes a power input of 35 kW at its full load speed of 980 rpm . The total stator losses are 1 kW and the friction and windage losses are 1.5 kW . Calculate (i) slip (ii) rotor ohmic losses (iii) shaft power (iv) shaft torque and (v) efficiency
2. a) Write the comparison between cage rotor and slip ring rotor with neat diagrams
b) Write short note on
(i) Double cage rotor
(ii) Deep bar rotor

UNIT-II

3. a) Explain the principle of operation of an induction generator.
b) The rotor resistance and standstill reactance per phase of a 3 phase slip-ring induction motor are 0.05 and 0.2 respectively. What should be the value of external resistance per phase to be inserted in the rotor circuit to give maximum torque at starting?

OR

4. a) Explain the Star-Delta starter with diagram. Derive the expression for starting toque to full load torque. Mention its limitations.

7M
b) A 4 pole IM and 6 pole IM are connected in cumulative cascade. The frequency in the secondary circuit of the 6 pole motor is observed to be 1 Hz . Determine the slip in each machine and combined speed of the set. Take the supply frequency as 50 Hz .

UNIT-III

5. Explain how the equivalent circuit parameters of 1-Ph Induction motor are obtained by conducting the No load and blocked rotor tests.

OR

6. Explain the construction and working of Split Phase and Capacitor Start-Run Induction motor. Mentions its applications.

UNIT-IV

7. a) What are harmonics? Explain the causes for harmonics.
b) 3-Ph, Y connected alternator has following data:

Voltage generated on O.C is 4000 V at 50 Hz , Speed is 500 rpm , stator slots/pole/ph is 3 , conductors/slot is 12 . Compute the no. of poles and useful flux/pole. Assume all conductors/ph to be connected in series and coil to be full pitched.

OR

8. a) Discuss the procedural steps to be followed for finding the voltage regulation of alternator using MMF method.
b) Find the voltage regulation at full load, 0.9 power factor lagging for a three phase, $1000 \mathrm{kVA}, 5000 \mathrm{~V}$, star connected alternator having an armature resistance of 0.08 per phase and a synchronous reactance of 7 per phase.

UNIT-V

9. a) Name the different starting methods of synchronous motor, explain how the
synchronous motor can start with help of damper winding.
b) State the main features of synchronous motor. Mention its applications.

8M
6M 12 11

OR
10. A $3-\mathrm{Ph}, 500 \mathrm{~V}$, synchronous motor draws a current of 50 A from the supply while driving certain load. The stator is star connected with armature resistance of $0.4 / \mathrm{ph}$, synchronous reactance is $4 / \mathrm{ph}$. Find the p.f at which motor would operate when field current is adjusted to give the generated e.m.f as i) 660 V and ii) 380 V .

Code: 19A243T

II B.Tech. II Semester Supplementary Examinations November 2023

Generation and Transmission of Electric Power

Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. Discuss the factors to be taken into account while selecting the site for a thermal power station.

OR

2. Discuss the advantages and disadvantages of a nuclear power plant as compared to other conventional power plants.

14M CO1 L2

UNIT-II

3. Why transposition of conductors in a three phase transmission lines is essential?

OR

4. Differentiate between bundled and composite conductors.

UNIT-III

5. Obtain the expression of voltage regulation and efficiency of a short transmission line in terms of line parameters.

OR

6. The ABCD constants of a three phase transmission lines are $\mathrm{A}=\mathrm{D}=0.936+\mathrm{j} 0.016, \mathrm{~B}=33.5+j 1.38$ ohms and $\mathrm{C}=(-0.9280+\mathrm{j} 901.223) \times 10^{-6} \mathrm{mho}$. The load at the receiving end is 40 MW at 200 kV with pf of 0.86 lagging. Find the magnitude of the sending end voltage, current, power and voltage regulation. Assume that the magnitude of the sending end voltage remains constant.

UNIT-IV

7. The towers of height 30 m and 90 m respectively support a transmission line conductor at water crossing. The horizontal distance betwen the towers is 500 m . If the tension in the conductor is 1600 kg , find the minimum clearance of the conductor and water and clearance mid-way between the supports. Weight of conductor is $15 \mathrm{~kg} / \mathrm{m}$. Bases of the towers can be considered to be at water level.

OR

8. Explain Ferranti effect and proximity effect.

UNIT-V

9. A single core lead sheathed cable has a conductor diameter of 3 cm ; the diameter of the cable being 9 cm . The cable is graded by using two dielectrics of relative permittivity 5 and 4 respectively with corresponding safe working stresses of $30 \mathrm{kV} / \mathrm{cm}$ and $20 \mathrm{kV} / \mathrm{cm}$. Calculate the radial thickness of each insulation and the safe working voltage of the cable.

14M CO3 L3

14M CO4 L3

14M CO4 L2

14M CO5 L3

OR

10. Describe with a neat sketch the construction of a 3-core belted type cable. Discuss the limitations of such a cable.
