	^ -	R	-19	
(Coc	le: 19A244T	103]
		II B.Tech. II Semester Supplementary Examinations November 20)23	
		Linear Control Systems		
	Mc	(Electrical and Electronics Engineering) ax. Marks: 70 Time:	3 Hou	irs
	-	wer any five full questions by choosing one question from each unit (5x14 = 7 *********		
		UNIT–I	Marks	со
1.	a)	Distinguish open loop and closed loop control system	6M	1
	b)	Derive the transfer function of an ac servo motor	8M	1
		OR		
2.	a)	Derive the transfer function of armature-controlled dc motor	6M	1
	b)	Explain the effect of feedback in reducing parameter variations.	8M	1
		UNIT–II		
3.	a)	I system has an open loop transfer function of		
		$G(s) = K/s(s^{2}+4s+3)$. Sketch the root locus	7M	2
	b)	For the given system, Sketch the root load $H(c) = 1/(c+1)$, the steady state		
		error constants for unit step, unit ramp and Unit parabolic input $\begin{pmatrix} d \\ t^2 / 2 \end{pmatrix} u(t)$	7M	2
		OR		
4.		A unity feedback system is characterized by the open loop transfer function		
		$G(s) = 1/s^*(0.5s+1)$ (0.2s+1). Determine the steady state error for unit step, unit ramp and unit acceleration inputs.	14M	2
			14101	Z
5.		Find the roots of the characteristic equations for systems whose open loop		
5.		transfer functions are given below:		
		i) G(s) H(s)= 1/ [(s+2) (s+4)]		
		ii) $G(s)H(s) = 1(s+3) / [s(s+3) (s+8)]$		
		iii) $G(s) = 9 / [s2^*(s+2)].$	14M	3
~		OR		
6.		oot locus of the system whose open loop transfer function Sketch the $(1+2)(S+4)$ Find the value of K so that the damning ratio of the		
		Sketch the $\mathfrak{H}+2$)(S+4). Find the value of K so that the damping ratio of the closed loop system is 0.5	14M	3
		UNIT-IV		
7.		Sketch the bode plot of a feedback system which has		
		$G(S)H(S) = 100^{\circ}(S+4) / [S^{\circ}(S+0.5)^{\circ}(S+10)].$		
		Also comment on the stability of the system.	14M	3
		OR		
8.		the plot for a system with loop transfer function		
		Sketch _G (S) $= \frac{\text{Polar}}{K(1+S)}^2/S^3$. Find the range of value of ^K for which the system is stable.	1 4 1 4	2
		UNIT-V	14M	3
9.			14M	4
э.		Explain design of the basic lead compensator using Bode plot OR	141VI	4
~		Obtain the state space representation of the field controlled and Armature		
0.				

Important Note: 1. On completing your answers. Compulsorily draw diagonal cross line on the remaining blank pages.

,	$C \sim c$	le: 19AC44T	R-19		
		II B.Tech. II Semester Supplementary Examinations November 2	2023		
		Life Sciences for Engineers	2020		
		(Common to EEE & ECE)			
	Mc	ix. Marks: 70 Tim	e: 3 H	ours	
	Ans	wer any five full questions by choosing one question from each unit (5x14 =	70 Mc	arks)	
			Marks	со	
		UNIT–I			
۱.	a)	Explain the hierarchy of classification?	7M	CO1	
	b)	Describe is Ribosomes? Write their structure and important functions and draw the labelled diagram?	7M	CO1	
		OR	7 111	001	
2.		Describe meant by classification? Write the importance of Classification?	14M	CO1	
		Describe mean by classification: while the importance of classification:		001	
		UNIT–II			
3.		Describe nucleic acids? Write the structure and functions of nucleic acids?	14M	CO2	
		OR			
1.		Describe the Biomolecules and write functions and types of biomolecules?	14M	CO2	
		UNIT–III			
5.		Explain the reaction of Krebs/TCA cycle?	14M	CO3	
		OR			
5.		Describe the structure of neuron and types? Give an account of the			
		Synaptic and neuromuscular junctions?	14M	CO3	
7.		UNIT–IV Describe the meiosis cell division process?	14M	C04	
•		OR	14111	004	
3.		Explain the Process of DNA Replication in prokaryotic and eukaryotic			
		animals?	14M	C04	
		UNIT–V			
).		Explain the Transgenic species and process in animals?	14M	CO5	
		OR			
).		Explain the various process of recombinant DNA technology?	14M	CO5	

	На	II Ticket Number :														
L	Cor	de: 19A245T												R-19)	
		II B.Tech. II Sen	nester	Supp	olem	nent	ary	Exai	mina	atior	ns N	over	nbe	er 2023		
			Netw	vork	An	alys	sis a	nd	Syn	thes	sis					
	M	ax. Marks: 70	(Electr	ical	and	Elec	tron	ics E	ngir	eeri	ng)		т	ime: 3 H		
		swer any five full qu	estions I	oy ch	noosii		ne q *****	uesti	on fr	om e	each	unit				
3 . 3 .						UNIT	- I							Marks	со	BL
g 1.	a)	Explain the Parallel												7M	CO1	L2
	b)	Two, 2-port network		onne	cted i	n pa	rallel	. The	e Y-pa	aram	eters	s of th	e			
		networks are given	_	1	٦											
		$\frac{1}{2} - \frac{1}{2}$	$\frac{1}{5}$	$-\frac{1}{10}$	$\frac{1}{2}$											
ý F		$Y_{A} = \begin{vmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{vmatrix} Y_{B}$	= 1	3												
2		$\begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$	$\lfloor 10$	$\overline{10}$												
י הער גע		Determine Z-param	neters of	the o	comb									7M	CO1	L3
					<i>.</i> –	OF										
2.	a) Þ	Explain the Cascac Two, 2-port network									noto	re of t	ho	7M	CO1	L2
	b)	networks are given		JIIIE	JIEU I	n ca	scau	. . II	е 2 -}	Jarai	nete	15 01 1				
		Network-1: V ₁ =8I ₁ +		V2=4	1 +7 2	2										
5		Network-2: V ₁ =2I ₁ +	I_2 and V	2 = 1+	2l ₂											
5		Determine the ABC	D parar	neter				netv	vork.					7M	CO1	L3
0	a)	Determine the Lapl	and tran	oforn												
0	a)	(i) $f(t) = tsin2t$ (ii) $f(t)$						•	nh3t					7M	CO2	L3
2	b)	Determine the Lapl								n bel	ow.					
d d d	,		v(t)													
			Ť													
		2	\$∨	1		\wedge										
					/	$ \rangle$										
<u>ה</u>			0	1	2 2	3	4	►t(se	c)							
				-	5	80) 	2							7M	CO2	L3
<u> </u>		Dovelop the stop	****	f		OF		:	aina	امما		Tron	form			
£ 4.		Develop the step approach.	respons	9 01	RL S	enes		uit u	sing	сарі	ace	Trans	siom		CO2	L3
N Contraction					l	JNIT-	-111]								
5.		Develop the dc tra	ansient	respo	onse	of R	RLC	serie	s cir	cuit	using	g clas	ssica	I		
		differential equation	n solvati	on ap	proa		_							14M	CO3	L6
~	-		man of t	• 1 4! - 1	0.6.5	OF								4014	000	10
6.		Explain the importa						siroui	+					10M	CO3	L2
	b)	Define the time cor	ISIGI IL UI	κr g	nu K	U Se	1185 (JII CUI	ι.					4M	CO3	L1

Code: 19A245T

			ue. 198	12431	
		UNIT–IV			
7.		In a two-element series network, voltage v(t) is applied, which is given as $v(t) = 50 + 50 \sin 5000t + 30 \sin 10000t$, the resultant current is given as $i(t) = 11.2 \sin(5000t+63.4^{\circ}) + 10.6 \sin(10000t+45^{\circ})$. Determine the network			
		elements and the power dissipated in the circuit.	14M	CO4	L3
		OR			
8.	a)	List out the properties of Fourier transforms.	7M	CO4	L1
	b)	Determine the Fourier Transform of the periodic waveform shown below.			
		v(t) ♠			
		0 T/2 T 3T/2 t(sec)	7M	CO4	L3
		UNIT-V			
9.	a)	Determine the Foster form-II realization for the function			
		$Z(s) = \frac{2(s+1)(s+3)}{s+3}$			
		$Z(s) = \frac{2(s+1)(s+3)}{s(s+2)(s+4)}$	7M	CO5	L3
	b)	Determine the Cauer form-II realization for the function			
		E(s) = 2(s+1)(s+3)			
		$F(s) = \frac{2(s+1)(s+3)}{s(s+2)}$	7M	CO5	L3
		OR			
10.	a)	Test the following function is Hurwitz or not?			
		$H(s) = s^5 + 3s^4 + 5s^3 + 9s^2 + 10s + 27$	7M	CO5	L5
	b)	Test the following function is positive real or not?			
		$s^2 + 5s + 6$			
		$F(s) = \frac{s^2 + 5s + 6}{s^3 + 6s^2 + 9s}$	7M	CO5	L5

ſ	На	II Ticket Numb	er:								
									R-19	>	
		de: 19AC42T B.Tech. Nu		al Met	hods an	tary Exam d Transf to EEE &EC	orm Tec				
		ax. Marks: 70 swer any five fu	ull questic	ons by c	-	ne questic	n from ea	ach unit (5	Time: 3 H 5x14 = 70 M		
					UNIT	I			Marks	со	BL
1.		Estimate the v		-			-	45			
		x f(x)	20 354	25 332	30 291	35 26-	40 231	45 204	14M	CO1	L2
		1(X)	004	002	OF		201	204		001	
2.	a)	Find the real r	oot of x le	$\log_{10} x = 1$.2 using F	alse positic	on Method	ł	7M	CO1	L3
	b)	Using lagrang									
		x y		5 12	6 13	9	•	11 16	7M	CO1	L3
					UNIT	-II					
3.	a)	Compute $\frac{dy}{dx}$ a	and $\frac{d^2 y}{dx^2}$	at x=1 fr	om the fol	lowing data	a.				
		x y	1 1	2 8	3 27	4 64	5 125	6 216	7M	CO2	L3
	b)	Solve $\frac{dy}{dx} = x$	$+y^2$, y(1)	() = 0 to	find y at	x=0.2 by F	Runge-Ku	tta methoo	d of		
		fourth order.			01	_			7M	CO2	L3
		1 1			OF						
4.	4. a) Estimate $\int_{0}^{1} \frac{1}{1+x^2} dx$ by using Simpon's 1/3 rule									CO2	L2
	b)	Solve $y' = 3x$	$+ y^2$, y(0) = 1 usin			nod and co	ompute y(0	.1) 7M	CO2	L3
F		Find the Lours	nt aariaa	ovnonoi							
э.	a)	Find the Laure z^2									
		$f(z) = \frac{z^2}{(z-1)^2}$,					7M	CO3	L4
	b)	Find the reside	ues of $f($	$(z) = \frac{1}{(z+z)}$	$\frac{z^2 - 2z}{(z^2 + 1)^2(z^2 + 1)}$	- at each po)	ble		7M	CO3	L1
					OF	र					
6.		Find the Laur	ent serie	es of $f($	$z) = \frac{z}{z(z^2 - z)}$	$\frac{+3}{-z-2}$ in t	he region	i) $ z < 1$, ii)		
		1 < z < 2 iii)	z > 2						14M	CO3	L4
7								$\frac{-x^2}{2}$			
7.		Find the Four reciprocal in re).Hence de	educe tha	t e ² is	self 14M	CO4	14
									ועודי		L-7

Important Note: 1. On completing your answers. Compulsorily draw diagonal cross line on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and/or equations written eq. 32+8=40, will be treated as malpractice.

Page **1** of **2**

Code: 19AC42T

OR8. a) Find the Fourier sine transform of
$$2e^{-5x} + 5e^{-2x}$$
7M CO4 L1b) Find the Fourier cosine transform of $f(x) = \begin{cases} x, 0 < x < 1 \\ 2 - x, 1 < x < 2 \\ 0, x \ge 2 \end{cases}$ 7M CO4 L19. Find inverse Z transform of $\frac{2z^2 + 3z}{(z+2)(z-4)}$ 14M CO5 L1OR10. a) Find $Z(n^2a^n)$ 7M CO5 L1b) Find $Z(e^t \sin 2t)$

		Ha	II Ticket Number :															
	L	Cor	he. 194241T		<u>]</u>											R-19		
		Code: 19A241T II B.Tech. II Semester Supplementary Examinations November 2023																
		Electrical Machines-II																
	(Electrical and Electronics Engineering) Max. Marks: 70 Time: 3 Hours																	
aj.		-	ax. Marks: 70 swer any five full qu	vestic	ons b	y ch	noosii	ng ol	ne a	uesti	ion fr	om e	each	unit (
actic			, ,			,		-	*****					,				וס
32+8=40, will be treated as malpractice.								UNI	T–I							Marks	СО	BL
as n	1.		A three phase, 400								•	•						
ated			full load speed of 9 windage losses are	•														
be tre			power (iv) shaft toro						Silp (1) 10			1033	C3 (III) Shart	14M	2	3
will b								0	R									
=40,	2.	a)	Write the compariso				•				•		n nea	t diagi	ams	7M	1	1
2+8 .		b)	Write short note on	(i) D	oubl	e caę	ge rot		. ,	Deep	bar ı	otor				7M	1	1
	3.	2)	Evoluin the principl	a of c	nora	tion	of an	UNI			orator					7M	1	2
tten	З.	a) b)	Explain the principle The rotor resistance							-			3 ph	nase s	lin-rina	7 111	I	Ζ
s wri		0)	induction motor are						•	•			•					
ation			external resistance	per	phase	e to I	be in	serte	d in t	he ro	otor c	ircuit	to gi	ve ma	ximum	784	0	0
edn			torque at starting?					0	R							7M	2	3
nd/or	4.	a)	Explain the Star-D	elta s	starte	r wit	h dia			erive	the	expre	essio	n for s	starting			
evaluator and/or equations written eg.		,	toque to full load					-				•			Ū	7M	3	2
'alua:		b)	A 4 pole IM and 6															
			in the secondary cir slip in each machin			-												
peal			as 50Hz.							_						7M	3	3
л, ар	_							UNI		,								
catior	5.		Explain how the obtained by conduct	•			•						uctio	n mot	or are	14M	4	2
entific									R									-
of ide	6.		Explain the constru				-		Split	Phas	se an	d Ca	pacit	or Sta	art-Run			
ling			Induction motor. M	entio	ns its	s app	licati									14M	2	2
evea	7.	a)	What are harmonic	≈2 E	vnlai	n the				mon	ice					7M	5	1
Any revealing of identification, appeal to	1.	b)	3-Ph, Y connected		-					mon	103.					7 1 1 1	5	1
5)	Voltage generated					•		Hz, ۲	Spee	d is	500	rpm,	stator			
			slots/pole/ph is 3,						•				•					
			flux/pole. Assume pitched.		Jhau	JUIS	pn u	be	conne	ected	ın s	enes	anu		be iuii	7M	4	3
								0	R									
	8.	a)	Discuss the procee		•		be fol	lowe	d for	findi	ng th	e vol	tage	regula	ation of		_	_
		۲	alternator using MM				JI 10			0.410-	fact	or la	adios	for -	three	7M	5	2
		b)	Find the voltage r phase, 1000 kVA	•					•									
			resistance of 0.08										-			7M	4	3

Important Note: 1. On completing your answers. Compulsorily draw diagonal cross line on the remaining blank pages. 2 Any revealing of identification appeal to evaluator and/or equations written ed. 32+8=40 will be treated as malpractice

UNIT–V

9. a)	Name the different starting methods of synchronous motor, explain how the synchronous motor can start with help of damper winding.	8M	1	2
b	State the main features of synchronous motor. Mention its applications.	6M	1	1
	OR			
10.	A 3 - Ph, 500V, synchronous motor draws a current of 50A from the supply while driving certain load. The stator is star connected with armature resistance of 0.4 /ph, synchronous reactance is 4 /ph. Find the p.f at which motor would operate when field current is adjusted to give the generated e.m.f as i) 660V and ii) 380V.	14M	4	3

		Hall Ticket Number :			
	L	Code: 19A243T	R-19	,	
ce.		II B.Tech. II Semester Supplementary Examinations November Generation and Transmission of Electric Power (Electrical and Electronics Engineering) Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x14 =	ne:3⊦		
Ilpracti		******* UNIT–I	Marks	со	BL
ated as ma	1.	Discuss the factors to be taken into account while selecting the site for a thermal power station.	14M	CO1	L2
e tre	2.	OR Discuss the advantages and disadvantages of a publicar power plant as			
3=40, will b		Discuss the advantages and disadvantages of a nuclear power plant as compared to other conventional power plants.	14M	CO1	L2
g. 32+8	3.	Why transposition of conductors in a three phase transmission lines is essential?	14M	CO2	L2
en e		OR			
ns writte	4.	Differentiate between bundled and composite conductors. UNIT-III	14M	CO2	L2
l/or equatio	5.	Obtain the expression of voltage regulation and efficiency of a short transmission line in terms of line parameters. OR	14M	CO3	L2
appeal to evaluator and/or equations written eg. 32+8=40, will be treated as malpractice	6.	The ABCD constants of a three phase transmission lines are $A=D=0.936+j0.016$, $B=33.5+j1.38$ ohms and $C=(-0.9280+j901.223)x10^{-6}$ mho. The load at the receiving end is 40MW at 200 kV with pf of 0.86 lagging. Find the magnitude of the sending end voltage, current, power and voltage regulation. Assume that the magnitude of the sending end voltage remains constant.	14M	CO3	L3
2. Any revealing of identification, appeal to	7.	UNIT-IV The towers of height 30 m and 90 m respectively support a transmission line conductor at water crossing. The horizontal distance betwen the towers is 500 m. If the tension in the conductor is 1600 kg, find the minimum clearance of the conductor and water and clearance mid-way between the supports. Weight of conductor is 1.5 kg/m. Bases of the towers can be considered to			
eve		be at water level.	14M	CO4	L3
2. Any i	8.	OR Explain Ferranti effect and proximity effect. UNIT-V	14M	CO4	L2
	9.	A single core lead sheathed cable has a conductor diameter of 3 cm; the diameter of the cable being 9 cm. The cable is graded by using two dielectrics of relative permittivity 5 and 4 respectively with corresponding safe working stresses of 30 kV/cm and 20 kV/cm. Calculate the radial thickness of each insulation and the safe working voltage of the cable.	14M	CO5	L3
	10.	Describe with a neat sketch the construction of a 3-core belted type cable. Discuss the limitations of such a cable. ***	14M	CO5	L2