											_				
	Hall Ticket Number :														
	Code: 19A243T	1	1	11	_[1	1		1		1		R-19		
	II B.Tech. II Ser	erati	on	upplem and Tro cal and	insn	nissi	on	of E	lect	ric l		er	2022 e: 3 Ho	NURS	
	Answer any five full qu	Jestic	ons b	oy choosi	-	ne qı *****	Jesti	on fr	om e	each	ı unit				
				UN	IT–I								Marks	CO	BL
1.	What are the factors plant	whic	ch af			on of	f site	ofa	a hyo	droel	ectric	; power	14M	CO1	L1
				C	R										
2.	Draw and explain sin	gle lir	ne dia	agram of UNI	-	o plai	nt.						14M	CO1	L1
3.	Derive the express symmetrical and unsy			I spacing		of a	3-р	hase	e ov	erhe	ad I	ine for		CO2	L2
4. a	wires each 15 mm dia	amete	er an	d 1.5 m a	apart.					C			7M	CO2	L3
b	 Determine the inducta radius of each cond circumference of an i figure. 	luctor	is i	20 mm a circle of	and t	he c	ondu	uctor	s ar	e pla	aced	on the		CO2	L3
5.	Distinguish between diagram.	sho	rt, m	nedium a	and l	ong	trans	smiss	sion	line	with	vector		CO3	L2
				C	R										
6.	Derive an expression vector diagram.	n for	volta	age regu	latior	n of a	a sh	ort t	ransr	nissi	on li	ne with	14M	CO3	L2
7.	Explain Ferranti effec	t and	prox	kimity effe									14M	CO4	L2
				C	R										
8.	A transmission line h has an effective dia strength is 8060 kg. I and is subjected to a sag for a safety facto	mete f the wind	r of conc l pres	1.96 cm ductor ha ssure of (n and s ice 3.9 g	d we coati m/ cr	ighs ing o n2 o [:]	0-86 f rad f pro	5 kg ial th jecte	g/m. nickn	lts ess ´	ultimate I-27 cm		CO4	L3
				UNI	T–V										
9.	The insulation resistand iameter is 2.5 cm and insulation thickness.			•					•				14M	CO5	L3
				C	R										
10.	A 66-kV single-core relative permittivity 5 diameter is 2 cm. Det	and 3	3 res	pectively	; thicl um st	kness	s of e	ach	bein	g 1 c	m. T			CO5	L3

		Hall Ticket Number :		1	
	L	Code: 19A244T	9		
		II B.Tech. II Semester Supplementary Examinations December 202	2		
		Linear Control Systems			
		(Electrical and Electronics Engineering)			
		Max. Marks: 70 Time: 3			
		Answer any five full questions by choosing one question from each unit (5x14 = 70)	Marks)		
			Marks	со	BL
4	-)				
١.	a)	Write the differential equations for the given mechanical system. Also obtain an analogous electrical circuit based on force- current analogy.			
		3F	8M	1	2
	b)	Derive the transfer function of an AC servo motor	6M	1	2
	~)	OR	0.11	•	-
2.	a)	Explain the properties of Signal Flow Graph	7M	1	1
	b)	Explain about Synchros with figures	7M	1	1
		UNIT–II			
3.		Derive the time domain specifications of a second order system	14M	2	1
		OR			
4.		Define Transfer Function, Characteristic equation, Poles, Zeros, Type & Order of a System with examples.	14M	2	1
		UNIT-III			
5.		A unity feedback State the most larger an open loop transfer function of		~	~
		$G(s) = K / s(s^2 + 4s + 3)$. Sketch the root locus OR	14M	3	2
6	a)				
0.	α,	characteristics equation $9S^5-20S^4+10S^3-S^2-9S-10=0$. Comment on the location of			
		characteristic equation.	10M	3	2
	b)	Define stability of a control system	4M	3	1
		UNIT–IV			
7.		Plot the bode diagram for the transfer function $=$ +0.4S)(1+0.1S). Also obtain the gain and phase cross over frequencies κ s(1)	14M	3	2
		OR			
8.		loop transfer function of a unity feedback system is given by The open $\xi+2$ (S+1). Sketch the Polar plot and Determine gain margin and phase margin	14M	3	2
		UNIT-V		-	
9.		Design a lead compensator for a system with transfer function (1+0)			
		the specifications: acceleration error constant K _a =10 and phase $\frac{G(s)}{margin} \frac{k}{\varphi^{PM}} = \frac{1}{36^{o}} for$	14M	4	2
		OR			
10.	a)		7M	4	2
	b)	Define Controllability and explain with an Example	7M	4	2

Hall Tic	ket Number :
Code: 1	9AC44T R-19
	3.Tech. II Semester Supplementary Examinations December 2022
	Life Sciences for Engineers
Max M	(Common to EEE & ECE) Narks: 70 Time: 3 Hours
	any five full questions by choosing one question from each unit (5x14 = 70 Marks)

	UNIT–I
1.	Describe the cellular basis of life?
	OR
2. a)	Explain the kingdom of Animalia?
b)	Describe the functions of Lysomes?
	UNIT-II
3.	Describe the mechanism of enzyme action?
	OR
4.	Describe the enzymes and write the importance of enzymes?
5.	UNIT–III Explain the reaction of Electron Transport Chain?
5.	OR
6. a)	Explain respiration and types of respiration?
b)	Explain the Oxidative phosphorylation?
	UNIT-IV
7.a)	Briefly describe the transcription and translation?
b)	Write the importance of Genetic code?
8.	Discuss the Gene Mapping?
•	
	UNIT-V
9.	Describe the DNA Microarray technique, types and applications?
	OR
10. a)	Explain the Importance of DNA Cloning?
b)	Describe the types of Biosensors?

	Hall Ticket Number :			
		R-19		
,	II B.Tech. II Semester Supplementary Examinations December 2	022		
	Network Analysis and Synthesis	-		
	(Electrical and Electronics Engineering)			
	Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x14 = 7	: 3 Hc		
		0 100	K3]	
	UNIT–I	Marks	CO	I
. a)	Explain the Y-parameters of the Two-Port Network.	7M	CO1	L
b)	Determine the Y-parameters of the Two-Port Network shown below.			
	25Ω 10Ω			
	α το			
			004	
		7M	CO1	
a)	OR Explain the ABCD-parameters of the Two-Port Network.	7M	CO1	
a) b)	Determine the ABCD-parameters of the Two-Port Network shown below.	7 101	001	
0)	·····			
	25Ω 10Ω			
	≥30Ω			
		7M	CO1	
、	UNIT-II			
a)	Determine the Laplace transform of the following functions. $(2-2e^{-2t})$			
	(i) f (t) = $(4t^3+t^2-6t+7)$ ii) f (t) = $\frac{(2-2e^{-2t})}{t}$	7M	CO2	
b)	Determine the Laplace transform of the non-periodic square wave of amplitude	71/	CO2	
	'A' and time period of 'T'sec. OR	7 101	002	
	Develop the step response of RC series circuit using Laplace Transform			
	approach.	14M	CO2	
	UNIT–III			
a)	Develop the dc transient response of RL series circuit using classical differential	714	CO2	
b)	equation solvation approach. A series RL circuit with R=20 and L=10H has a constant voltage V=50v	<i>i</i> IVI	CO3	
5)	applied at $t=0$. Determine the expression for the current $i(t)$ using classical			
	differential equation approach.	7M	CO3	
	differential equation approach.	7M	CO3	

- 6. a) Develop the transient response of RC series circuit for sinusoidal excitation using classical differential equation solvation approach. 7M CO3 L6 b) A Series RC circuit with R= 5 and C= 0.01µf, has a sinusoidal voltage $v(t) = 100 \sin 1000t$ applied at t=0. Determine the current i(t) for t>0 using classical differential equation approach. 7M CO3 L3 UNIT-IV 7. a) Determine the Fourier transform of the following functions (i) f(t) = sgn(t) (ii) f(t) = A (where 'A' is constant) 7M CO4 L3 b) Determine the Fourier Transform of the waveform shown below. v(t) -T/2 T/2 0 7M CO4 L3 OR Determine the trigonometric Fourier series expansion of the waveform shown 8. a) below. v(t) 1 ► t(sec) 3T/2 T/2 0 7M CO4 L3 Determine the impedance, power and power factor whose expression for b) voltage and current are given as: $v(t) = (100 \sin(t+60^\circ) - 50 \sin(3 t-30^\circ)) V$ $i(t) = (10 \sin(t+60^\circ) + 50 \cos(3t+60^\circ)) A$ 7M CO4 L3 UNIT-V 9. a) List out the necessary conditions for a Transfer function? 7M CO5 L1 b) Draw the pole-zero diagram of the following driving point impedance function. $Z(s) = \frac{s^2 - 7s + 10}{s^2 + s + 50}$ 7M CO5 L4 OR Determine the Foster form-I realization for the following function 10. a) $Z(s) = \frac{s(s^2 + 2)}{(s^2 + 1)(s^2 + 3)}$ 7M CO5 L3
 - b) Determine the Cauer form-I realization for the following function

$$Z(s) = \frac{s(s^2 + 3)(s^2 + 5)}{(s^2 + 2)(s^2 + 4)}$$
7M CO5 L3

	Hall Ticket Number :	D 10		
Ċ	Code: 19AC42T	R-19		
	II B.Tech. II Semester Supplementary Examinations Decembe	er 2022		
	Numerical Methods and Transform Techniques (Common to EEE & ECE)			
		ime: 3 Ho 4 = 70 Mar		

	UNIT–I	Marks	CO	BL
1. a)				
	Method.	7M	1	1
b)	Find y at $x = 21$ from the following data			
	x 20 23 26 29	714	4	4
	y 0.3420 0.3907 0.4384 0.4848 OR	7M	1	1
2.	Calculate $y(160)$ and $y(390)$ from the following data			
	x 100 150 200 250 300 350 400			
	y 10.63 13.03 15.04 16.81 18.42 19.90 21.27	14M	1	3
2	UNIT-II			
3.	Compute y(0.1), y(0.2), y(0.3) from $y' = x - y^2$,			
	y(0) = 1 using Taylor series method.	14M	2	3
4	OR Angle Denge Kette Fourth and a mathed to find the value of			
4.	Apply Runge Kutta Fourth order method to find the value of			
	y when x=0.2 given that $\frac{dy}{dx} = x + y^2$,y=1 when x=0			
	$\frac{dx}{dx}$	14M	2	3
	UNIT–III			
5.	Determine the poles of the function $f(z) = \frac{z^2}{(z-1)^2(z+2)}$			
0.	$(z-1)^2(z+2)$			
	and the residues at each pole.	14M	3	3
	OR			
6.	Find $\int \frac{e^{2z}}{(z-1)(z-2)} dz$ where $c : z = 3$			
0.	$\int_{c} (z-1)(z-2)^{az} (z-2)^{az} (z-2)^{az} $	14M	3	4

UNIT-IV7. a) Express
$$f(x) = \begin{cases} 1, 0 \le x \le f \\ 0, x > f \end{cases}$$
 as a Fourier sine integraland hence evaluate $\int_{0}^{\infty} \frac{1 - \cos(f)}{3} \sin(x) d$ b) Show that $F_s \{xf(x)\} = -\frac{d}{ds} F_c(s)$ and $F_c \{xf(x)\} = \frac{d}{ds} F_s(s)$ oR8. Find the Fourier Cosine transform of $f(x) = \frac{1}{1 + x^2}$ 14M 4 1**OR**9. a) Find $Z((n+1)^2)$ b) Find $Z(\cos n,)$ OR7M 5 114M 4 1**OR**7M 5 1**OR**7M 5 1**OR**

		Hall Ticket Number :		_	
	L	Code: 19A242T	9		
		II B.Tech. II Semester Supplementary Examinations December 202	2		
		Electromagnetic Fields			
		(Electrical and Electronics Engineering)			
		Max. Marks: 70 Time: 3 Answer any five full questions by choosing one question from each unit $(5x14 = 70 I)$			
		*****	Marks	со	BL
		UNIT–I			
1.	a)	•	7M	1	2
	b)	\mathbf{O}			•
		origin respectively. Find the force on the charge at origin.	7M	1	3
C	a)	OR Determine the electric field intensity E at (6,8, -10) caused by a i) Point charge			
۷.	a)	50μ C at origin ii) An infinite line charge 40μ C along z-axis.	10M	1	3
	b)		4M	1	1
	,	UNIT-II			
3.		Derive the expression for potential at a point 'p' due to electric dipole and also			
		extend the derivation for electric field intensity due to electric dipole.	14M	1	3
		OR			
4.	a)	5			
	L)	normal component.	7M	1	4
	b)	•	7M	2	2
5	a)	UNIT-III State and explain Biot-savart's law.	7M	3	2
0.	b)		7 101	0	2
	0)	vicinity of a straight current carrying conductor of finite length.	7M	3	3
		OR			
6.	a)	Derive Maxwell's equation $\nabla X H = J$	8M	3	3
	b)				
		B and H.	6M	3	1
		UNIT–IV			
7.		Derive an expression for the force between parallel wire carrying a current in (i) the		•	•
		same direction. (ii) opposite direction	14M	3	3
o	2)	OR Develop expression for inductorses of colonaid	7M	3	Λ
0.	a) b)		71VI 7M	3 4	4 1
	0)	Write a short note on magnetization.	7 111	4	I
9.	a)		7M	5	2
•	b)		7M	5	1
	,	OR			
10.	a)	Derive the integral and point form of time varying Maxwell equation from Gauss law.	8M	5	3
	b)	A single turn rectangular loop of enclosed area 2sqm is situated in air with its plane			
		normal to the Magnetic field which weighs at a rate of 2wb/m ² sec. Estimate emf		-	-
		induced in the loop.	6M	5	3

	Hall Ticket Number :			
L	Code: 19A241T	-19		
	Il B.Tech. Il Semester Supplementary Examinations December 20 Electrical Machines-II (Electrical and Electronics Engineering)	22		
		3 Hours) Marks)		
	UNIT-I	Marks	CO	
. a) b)	Explain in detail about torque – slip characteristics. The power input to the rotor of 440V, 50 Hz, 6 pole, 3-phase, and induction motor is	8M	1	
	80KW. The rotor electromotive force is observed to make 100 complete alterations per minute. Calculate (i) the slip (ii) the rotor speed (iii) rotor copper losses per phase.	6M	1	
2. a)	Write short note on	714	1	
b)	 (i) Double cage rotor (ii) Deep bar rotor A 3-phase, 4-pole, 50 Hz, induction motor has a star connected wound rotor. The rotor emf is 50V between the slip rings at standstill. The rotor resistance and standstill reactance are 0.4 and 2 respectively. Calculate rotor current per phase at starting if 	7M	1	
	50 /ph resistance is connected between slip rings.	7M	1	
5. a) b)	Explain the induction motor operation under injection of an e.m.f. into the rotor circuit A cascade set consists of two motor A and B with 4 and 6 poles respectively. The motor A is connected to 50Hz supply. Find (i) The speed of the set, (ii) The power	7M	1	
	transferred to motor B when the input to the motor A is 25KW. OR	7M	2	
. a)	Explain the working principle of Induction generator.	7M	2	
b) 5.	Explain the conducting procedure of Blocked rotor test on three phase induction motor. UNIT-III Write a short note on (i) Capacitor Start Induction motor	7M	1	
	(ii) Capacitor Start-Run Induction motor OR	14M	2	
).	Discuss the working of 1-Ph induction motor. Using double field revolving theory, prove that the 1-Ph induction motor is not self-starting motor.	14M	2	
'. a)	Compare the salient features of projecting pole rotor and round rotor.	8M	1	
b)	Find the pitch factor for the winding of 36 slots, 4 poles, coil span 1 to 8.	6M	1	
b. a)	Explain in detail about the constructional features of round rotor synchronous machines. An alternator has 18 slots/pole and first coil lies in slots 1 and 16. Calculate the pitch	7M	2	
D)	factor for (i) Fundamental (ii) 3 rd harmonics (iii) 5 th harmonics UNIT-V	7M	4	
). a) b)	What is an infinite bus? Mention the conditions to be satisfied prior to synchronizing an alternator to infinite bus bar. A 10MVA 3-ph alternator has a reactance of 20%. Calculate the total synchronizing	6M	6M	
/	power of armature per mechanical degree of phase displacement when running in parallel on 10KV, 50Hz bus at 1500rpm.	8M	6M	
).	OR Two single phase alternators operate in parallel and supply a load impedance of			
	 (3 + j4) /ph. If the impedance is (0.2 + j2) /ph, e.m.f.s are (220 + j0) V, determine (i) Terminal voltage, (ii) p.f and output power of each machine. 	14M	6M	