Hall Ticket Number :

Code: 19A243T

R-19

II B.Tech. II Semester Supplementary Examinations December 2022

Generation and Transmission of Electric Power

(Electrical and Electronics Engineering)

Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$
Marks CO BL

UNIT-I

1. What are the factors which affect the location of site of a hydroelectric power plant

OR

2. Draw and explain single line diagram of hydro plant.

UNIT-II

3. Derive the expression for capacitance of a 3-phase overhead line for symmetrical and unsymmetrical spacing.

OR

4. a) Find out capacitance of a single phase line 30 km long consisting of two parallel wires each 15 mm diameter and 1.5 m apart.
b) Determine the inductance per phase per km of a double circuit 3-phase line .The radius of each conductor is 20 mm and the conductors are placed on the circumference of an imaginary circle of radius 7 m forming a regular hexagonal figure.

UNIT-III

5. Distinguish between short, medium and long transmission line with vector diagram.

OR

6. Derive an expression for voltage regulation of a short transmission line with vector diagram.

UNIT-IV

7. Explain Ferranti effect and proximity effect.

OR

8. A transmission line has a span of 275 m between level supports. The conductor has an effective diameter of 196 cm and weighs $0865 \mathrm{~kg} / \mathrm{m}$. Its ultimate strength is 8060 kg . If the conductor has ice coating of radial thickness 127 cm and is subjected to a wind pressure of $39 \mathrm{gm} / \mathrm{cm} 2$ of projected area, calculate sag for a safety factor of 2 . Weight of 1 c.c. of ice is 091 gm .

UNIT-V

9. The insulation resistance of a single-core cable is $495 \mathrm{M}_{_}$per km. If the core diameter is 25 cm and resistivity of insulation is $45 \times 10^{14} \mathrm{ohm}-\mathrm{cm}$, find the insulation thickness.

OR

10. A 66-kV single-core lead sheathed cable is graded by using two dielectrics of relative permittivity 5 and 3 respectively; thickness of each being 1 cm . The core diameter is 2 cm . Determine the maximum stress in the two dielectrics.

14M CO5

Code: 19A244T

II B.Tech. II Semester Supplementary Examinations December 2022

Linear Control Systems

(Electrical and Electronics Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

UNIT-I

1. a) Write the differential equations for the given mechanical system. Also obtain an analogous electrical circuit based on force- current analogy.

b) Derive the transfer function of an AC servo motor

OR
2. a) Explain the properties of Signal Flow Graph

UNIT-II

3. Derive the time domain specifications of a second order system

OR

4. Define Transfer Function, Characteristic equation, Poles, Zeros, Type \& Order of a System with examples.

UNIT-III

5. A unity feedback ontrol system has an open loop transfer function of ${ }_{G(s)}=K / s\left(s^{2}+4 s+3\right)$. Siketch the root locus
6. a) By Routh stability criterion determine the stability of the system represented by characteristics equation $9 S^{5}-20 S^{4}+10 S^{3}-S^{2}-9 S-10=0$. Comment on the location of characteristic equation.
b) Define stability of a control system

UNIT-IV

7. Plot the bode diagram for the transfer function $\left.={ }_{\kappa / \bar{S}(1}+0.4 \mathrm{~S}\right)(1+0.1 \mathrm{~S})$. Also obtain the gain and phase cross over frequencie $s_{s}^{G(S)} \quad \kappa / s(1$

OR

8. loop transfer function of a unity feedback system is given by
 margin

UNIT-V

10. a) Define Observability and explain with an Example
b) Define Controllability and explain with an Example

Code: 19AC44T

Life Sciences for Engineers

(Common to EEE \& ECE)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. Describe the cellular basis of life?

OR

2. a) Explain the kingdom of Animalia?
b) Describe the functions of Lysomes?

UNIT-II

3. Describe the mechanism of enzyme action?

OR
4. Describe the enzymes and write the importance of enzymes?

UNIT-III
5. Explain the reaction of Electron Transport Chain?

OR
6. a) Explain respiration and types of respiration?
b) Explain the Oxidative phosphorylation?

UNIT-IV

7. a) Briefly describe the transcription and translation?
b) Write the importance of Genetic code?
OR
8. Discuss the Gene Mapping?

UNIT-V
9. Describe the DNA Microarray technique, types and applications?

OR
10. a) Explain the Importance of DNA Cloning?
b) Describe the types of Biosensors?

Hall Ticket Number : \square
Code: 19A245T

R-19

II B.Tech. II Semester Supplementary Examinations December 2022
Network Analysis and Synthesis
(Electrical and Electronics Engineering)
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$

UNIT-I

1. a) Explain the Y -parameters of the Two-Port Network.

Marks CO
b) Determine the Y -parameters of the Two-Port Network shown below.

2. a) Explain the ABCD-parameters of the Two-Port Network.
b) Determine the ABCD-parameters of the Two-Port Network shown below.

3. a) Determine the Laplace transform of the following functions.
(i) $f(t)=\left(4 t^{3}+t^{2}-6 t+7\right)$
ii) $\mathrm{f}(\mathrm{t})=\frac{\left(2-2 e^{-2 t}\right)}{t}$

7M CO2
L3
b) Determine the Laplace transform of the non-periodic square wave of amplitude ' A ' and time period of ' T 'sec.

7M CO2

OR

4. Develop the step response of RC series circuit using Laplace Transform approach.

UNIT-III

5. a) Develop the dc transient response of RL series circuit using classical differential equation solvation approach.

7M CO3
b) A series $R L$ circuit with $R=20$ and $L=10 H$ has a constant voltage $V=50 v$ applied at $t=0$. Determine the expression for the current $i(t)$ using classical differential equation approach.

7M CO3
6. a) Develop the transient response of RC series circuit for sinusoidal excitation using classical differential equation solvation approach.

7M CO3
L6
b) A Series RC circuit with $\mathrm{R}=5$ and $\mathrm{C}=0.01 \mu \mathrm{f}$, has a sinusoidal voltage $\mathrm{v}(\mathrm{t})=100 \sin 1000 \mathrm{t}$ applied at $\mathrm{t}=0$. Determine the current $\mathrm{i}(\mathrm{t})$ for $\mathrm{t}>0$ using classical differential equation approach.

UNIT-IV

7. a) Determine the Fourier transform of the following functions
(i) $f(t)=\operatorname{sgn}(t)$
(ii) $f(t)=A$ (where ' A ' is constant)

7M CO4
L3
b) Determine the Fourier Transform of the waveform shown below.

7M CO4
L3
OR
8. a) Determine the trigonometric Fourier series expansion of the waveform shown below.

b) Determine the impedance, power and power factor whose expression for voltage and current are given as:

$$
\begin{aligned}
& v(t)=\left(100 \sin \left(\omega t+60^{\circ}\right)-50 \sin \left(3 \omega t-30^{\circ}\right)\right) V \\
& i(t)=\left(10 \sin \left(\omega t+60^{\circ}\right)+50 \cos \left(3 \omega t+60^{\circ}\right)\right) A
\end{aligned}
$$

7M CO4

UNIT-V

9. a) List out the necessary conditions for a Transfer function?

7M CO5
b) Draw the pole-zero diagram of the following driving point impedance function.
$Z(s)=\frac{s^{2}-7 s+10}{s^{2}+s+50}$

OR

10. a) Determine the Foster form-I realization for the following function

$$
Z(s)=\frac{s\left(s^{2}+2\right)}{\left(s^{2}+1\right)\left(s^{2}+3\right)}
$$

7M CO5
b) Determine the Cauer form-I realization for the following function
$Z(s)=\frac{s\left(s^{2}+3\right)\left(s^{2}+5\right)}{\left(s^{2}+2\right)\left(s^{2}+4\right)}$

Code: 19AC42T
|| B.Tech. || Semester Supplementary Examinations December 2022

Numerical Methods and Transform Techniques

(Common to EEE \& ECE)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Find the real root of $x-\cos x=0$ by Newton Raphson Method.
b) Find y at $x=21$ from the following data

x	20	23	26	29
y	0.3420	0.3907	0.4384	0.4848

2. Calculate $y(160)$ and $y(390)$ from the following data

x	100	150	200	250	300	350	400
y	10.63	13.03	15.04	16.81	18.42	19.90	21.27

UNIT-II

3. Compute $y(0.1), y(0.2), y(0.3)$ from $y^{\prime}=x-y^{2}$, $y(0)=1$ using Taylor series method.

OR

4. Apply Runge Kutta Fourth order method to find the value of y when $\mathrm{x}=0.2$ given that $\frac{d y}{d x}=x+y^{2}, \mathrm{y}=1$ when $\mathrm{x}=0$ $d x$

UNIT-III

5. Determine the poles of the function $f(z)=\frac{z^{2}}{(z-1)^{2}(z+2)}$ and the residues at each pole.
6. Find $\int \frac{e^{2 z}}{(z-1)(z-2)} d z$ where $c:|z|=3$

UNIT-IV

7. a) Express $f(x)=\left\{\begin{array}{l}1,0 \leq x \leq \pi \\ 0, x>\pi\end{array}\right.$ as a Fourier sine integral and hence evaluate $\int_{0}^{\infty} \frac{1-\cos (\pi \lambda)}{\lambda} \sin (x \lambda) d \lambda$
b) Show that $F_{s}\{x f(x)\}=-\frac{d}{d s} F_{c}(s)$
and $F_{c}\{x f(x)\}=\frac{d}{d s} F_{s}(s)$

OR

8. Find the Fourier Cosine transform of $f(x)=\frac{1}{1+x^{2}}$

UNIT-V

9. a) Find $Z\left((n+1)^{2}\right)$

7M $\quad 5 \quad 1$
b) Find $Z(\cos n \theta)$
10. a) Find $Z(\sin (3 n+5))$ 7M $5 \quad 1$
b) Find Z transform of $3 n-4 \sin \frac{n \pi}{4_{* * *}}+5 a$

Code: 19A242T

II B.Tech. Il Semester Supplementary Examinations December 2022
Electromagnetic Fields
(Electrical and Electronics Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
UNIT-I

1. a) State and explain vector form of Coulombs law.
b) Three charges of $5 \mu \mathrm{C}, 8 \mu \mathrm{C}$ and $10 \mu \mathrm{C}$ are placed at $P_{1}(2,-3,4), P_{2}(2,3,4)$ and origin respectively. Find the force on the charge at origin.

OR

2. a) Determine the electric field intensity E at $(6,8,-10)$ caused by a i) Point charge $50 \mu \mathrm{C}$ at origin ii) An infinite line charge $40 \mu \mathrm{C}$ along z -axis.
b) Define potential and potential difference

UNIT-II

3. Derive the expression for potential at a point ' p ' due to electric dipole and also extend the derivation for electric field intensity due to electric dipole.

OR

4. a) Deduce the boundary conditions for dielectric to conductor with tangential and normal component.
b) Explain Polarization of dielectric materials.

UNIT-III

5. a) State and explain Biot-savart's law.
b) Using Biot-savart law, evaluate an expression for the magnetic field intensity in the vicinity of a straight current carrying conductor of finite length.

OR

6. a) Derive Maxwell's equation $\nabla X H=J$

8M
33
b) Define Magnetic flux, Magnetic flux density, MFI and give the relationship between B and H.
6M $3 \quad 1$

UNIT-IV

7. Derive an expression for the force between parallel wire carrying a current in (i) the same direction. (ii) opposite direction

OR

8. a) Develop expression for inductance of solenoid.
b) Write a short note on magnetization.

UNIT-V

9. a) Explain the terms (i)Motional EMF and (ii)Static EMF
7M 52
b) Describe the significance of Displacement current.

OR

10. a) Derive the integral and point form of time varying Maxwell equation from Gauss law.

8M
b) A single turn rectangular loop of enclosed area 2 sqm is situated in air with its plane normal to the Magnetic field which weighs at a rate of $2 \mathrm{wb} / \mathrm{m}^{2} \mathrm{sec}$. Estimate emf induced in the loop.

Code: 19A241T
|| B.Tech. II Semester Supplementary Examinations December 2022

Electrical Machines-II
 (Electrical and Electronics Engineering)

Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$

UNIT-I

1. a) Explain in detail about torque - slip characteristics.
b) The power input to the rotor of $440 \mathrm{~V}, 50 \mathrm{~Hz}, 6$ pole, 3 -phase, and induction motor is

80 KW . The rotor electromotive force is observed to make 100 complete alterations per minute. Calculate (i) the slip (ii) the rotor speed (iii) rotor copper losses per phase.

Time: 3 Hours

OR

2. a) Write short note on
(i) Double cage rotor
(ii) Deep bar rotor

7M
b) A 3-phase, 4-pole, 50 Hz , induction motor has a star connected wound rotor. The rotor emf is 50 V between the slip rings at standstill. The rotor resistance and standstill reactance are 0.4 and 2 respectively. Calculate rotor current per phase at starting if $50 / \mathrm{ph}$ resistance is connected between slip rings.

UNIT-II
3. a) Explain the induction motor operation under injection of an e.m.f. into the rotor circuit
b) A cascade set consists of two motor A and B with 4 and 6 poles respectively. The motor A is connected to 50 Hz supply. Find (i) The speed of the set, (ii) The power transferred to motor B when the input to the motor A is 25 KW .

OR

4. a) Explain the working principle of Induction generator.
b) Explain the conducting procedure of Blocked rotor test on three phase induction motor.

UNIT-III

5. Write a short note on (i) Capacitor Start Induction motor

(ii) Capacitor Start-Run Induction motor

6. Discuss the working of 1-Ph induction motor. Using double field revolving theory, prove that the $1-\mathrm{Ph}$ induction motor is not self-starting motor.

14 M	2	2
8 M	1	1
6 M	1	2
$7 M$	2	2
$7 M$	4	3

7. a) Compare the salient features of projecting pole rotor and round rotor.
b) Find the pitch factor for the winding of 36 slots, 4 poles, coil span 1 to 8 .

OR

8. a) Explain in detail about the constructional features of round rotor synchronous machines.
b) An alternator has 18 slots/pole and first coil lies in slots 1 and 16. Calculate the pitch factor for (i) Fundamental (ii) $3^{\text {rd }}$ harmonics (iii) $5^{\text {th }}$ harmonics
9. a) What is an infinite bus? Mention the conditions to be satisfied prior to synchronizing an alternator to infinite bus bar.
b) A 10MVA 3-ph alternator has a reactance of 20%. Calculate the total synchronizing power of armature per mechanical degree of phase displacement when running in parallel on $10 \mathrm{KV}, 50 \mathrm{~Hz}$ bus at 1500 rpm .

OR

10. Two single phase alternators operate in parallel and supply a load impedance of $(3+\mathrm{j} 4) \quad / \mathrm{ph}$. If the impedance is $(0.2+\mathrm{j} 2) \quad / \mathrm{ph}$, e.m.f.s are $(220+\mathrm{j} 0) \mathrm{V}$, determine (i) Terminal voltage, (ii) p.f and output power of each machine.
