|| B.Tech. || Semester Supplementary Examinations April 2023

Dynamics of Machinery
 (Mechanical Engineering)

Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
3. Explain the differential band brake with neat sketch and also discuss the self-locking condition of it.

OR

4. The turbine rotor of a ship has a mass of 3500 kg . It has a radius of gyration of 0.45 m and a speed of 3000 r.p.m. clockwise when looking from stern. Determine the gyroscopic couple and its effect upon the ship, when the ship is steering to the left on a curve of 100 m radius at a speed of 36 km/h.

UNIT-III

5. a) Classify the governors.
b) Evaluate the vertical height of a Watt governor when it rotates at 60 r.p.m. Also find the change in vertical height when its speed increases to 61 r.p.m.

OR

6. A Proell governor has equal arms of length 300 mm . The upper and lower ends of the arms are pivoted on the axis of the governor. The extension arms of the lower links are each 80 mm long and parallel to the axis when the radii of rotation of the balls are 150 mm and 200 mm . The mass of each ball is 10 kg and the mass of the central load is 100 kg . Determine the range of speed of the governor.

UNIT-IV

7. Describe the balancing of a several masses rotating in the same plane.

OR

8. Describe the primary and secondary unbalanced forces of reciprocating masses.

UNIT-V

9. Describe the types of free vibrations with neat sketches.

OR

10. Evaluate the whirling speed of a shaft 20 mm diameter and 0.6 m long carrying a mass of 1 kg at its mid-point. The density of the shaft material is $40 \mathrm{Mg} / \mathrm{m}^{3}$, and Young's modulus is $200 \mathrm{GN} / \mathrm{m}^{2}$. Assume the shaft to be freely supported.

Code: 19A342T

II B.Tech. II Semester Supplementary Examinations April 2023

Fluid Mechanics and Hydraulic Machinery
(Mechanical Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. A U-tube differential manometer has been arranged to measure the pressure difference between two points A and B in a sloping pipeline conveying water. The point B lies 20 cm higher than point A. If the difference in the level of mercury in limbs of U-tube is 60 cm , calculate the pressure difference $\left(P_{A} \sim P_{B}\right)$.

OR

2. Derive the equation of continuity for one dimensional flow of an incompressible fluid

UNIT-II

3. Water flows through a horizontal conical pipe, with diameter at the larger end as 1.3 m and that at the smaller end as 0.70 m . the pressure head at the smaller head is 5 m of water, and the discharge is $3.5 \mathrm{~m}^{3} / \mathrm{sec}$. Calculate the velocities at the two ends and the pressure head at the larger end. Neglect losses.

OR

4. State the momentum equation. How will you apply momentum equation for determining the force exerted by a flowing fluid on a pipe bend?

UNIT-III

5. What do you understand by pumped storage type of power station? What are its merits and demerits when compared with other types? Use sketches if necessary.

OR

6. A jet of water of diameter 50 mm , having a velocity of $20 \mathrm{~m} / \mathrm{s}$ strikes a curved vane which is moving with a velocity of $10 \mathrm{~m} / \mathrm{s}$ in the direction of jet. The jet leaves the vane at an angle of 600 to the direction of motion of vane at outlet. Determine i) Force exerted by the jet on the vane in the direction of motion ii) Work done per second by the jet.

UNIT-IV

7. Define a turbine and bring out the differences between reaction turbine and impulse turbine.

OR

8. Explain what you understand by governing of a hydraulic turbine with neat sketches.

UNIT-V

9. Define and explain how manometric head of a centrifugal pump is measured. Compare this with total head, suction head and delivery head of a centrifugal pump.

OR

10. The impeller of a centrifugal pump has 1.2 m outside diameter. It is used to lift 1800 litres of water per second against a head of 6 m . Its vanes make an angle of 1500 with the direction of motion at outlet and runs at 200 rpm . If the radial velocity of flow at outlet is $2.5 \mathrm{~m} / \mathrm{s}$, find the manometric efficiency. Also find the lowest speed to start the pump, if the diameter of the impeller at inlet is equal to half the diameter at exit.

14M CO4 L2

14M CO5 L2
\square

Code: 19AE41T

|| B.Tech. II Semester Supplementary Examinations April 2023

Managerial Economics and Financial Analysis

(Common to CE and ME)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. Deliberate the importance and scope of Managerial Economics?

OR
2. Explain the following
a) Types of Demand
b) Determinants of Demand
UNIT-II
3. Define Cost. Explain the different cost concepts used in the process of Cost Analysis

OR

4. Outline the Cobb-Douglas production function. What are the properties of this function?

14M CO1 L2

UNIT-III

5. Explain the following
a) Partnership Deed
b) Formation of Company

OR
6. Define Company, what are the characteristics of Company and Explain the contrast between public company and private company?

UNIT-IV

7. Compare merits \& demerits of Pay Back Period \& Accounting Rate of Return Methods of capital budgeting.

OR

8. Kumar \& Co Itd is contemplating the purchase of machinery. Two machines A and B are available each at Rs. 2,50,000. Net cash inflows (Amt, in Rs.)

Year	Machine A	Machine B
1	75,000	25,000
2	$1,00,000$	50,000
3	$1,25,000$	$1,00,000$
4	75,000	$1,50,000$
5	50,000	$1,00,000$

Calculate NPV @10\%
UNIT-V
9. Define accounting. What do you understand by Double Entry System of bookkeeping? Explain

OR

10. Journalize the following transactions and prepare a cash ledger. Jan $1^{\text {st }} 2021$ (Jan1st, Jan2nd.)
11. Ram invests Rs. 10, 000 in cash.
12. He bought goods worth Rs. 2000 from shyam.
13. He bought a machine for Rs. 5000 from Lakshman on account.
14. He paid to Lakshman Rs. 2000
15. He sold goods for cash Rs. 3000
16. He sold goods to A on account Rs. 4000
17. He paid to Shyam Rs. 1000
18. He received amount from A Rs. 2000

Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. What types of allowances are generally incorporated into a casting pattern? Explain with neat sketches?

OR
2. Describe the working of centrifugal casting and explain its advantages and disadvantages?

6 M CO2 L2
b) Explain its construction with various types of gas welding flames? 8M CO2 L2
4. a) What are the differences between TIG and MIG welding processes? 6M CO2 L4
b) Compare Soldering, Brazing, and Welding?

14M CO3 L2

OR

6. Define the terms cold working and hot working. Discuss the effects of cold working and hot working on the properties of materials. Explain their advantages and disadvantages?

14M CO4 L4

14M CO4 L2
9. Explain injection moulding process and applications?

14M CO5 L4
10. Give a broad classification of 'plastic materials'. State their properties and applications?

II B.Tech. II Semester Supplementary Examinations April 2023

Numerical Methods \& Probability and Statistics

(Common to CE \& ME)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I
 UNT-I

Marks CO BL
Find a real root of the equation $x^{3}-2 x-5=0$ by the method of false position correct to three decimal places.

OR
2. Using Lagrange's formula, calculate $f(9)$ from the following table:

x	5	7	11	13	17
$f(x)$	150	392	1492	2366	5202

14M CO1 L3
UNIT-II
3. Evaluate $\int_{0}^{6} \frac{d x}{1+x^{2}}$ by using
(i) Trapezoidal rule (ii) Simpson's $1 / 3$ rule and (iii) Simpson's $3 / 8$ rule.
14M CO2 L2

OR
4. Using Runge-Kutta method of fourth order, solve $\frac{d y}{d x}=\frac{y^{2}-x^{2}}{y^{2}+x^{2}}$ with $\mathrm{y}(0)=1$ at $x=0.2,0.4$

14M CO2 L3

UNIT-III

5. A random variable X has the following Probability function:

X	0	1	2	3	4	5	6	7
$\mathrm{P}(\mathrm{x})$	0	K	2 K	2 K	3 K	K^{2}	$2 K^{2}$	$7 K^{2}+\mathrm{K}$

(i) Determine K
(ii) Mean
(iii) Variance and
(iv) Evaluate $P(X<6), P(X \geq 6), P(0<X<5)$ and $P(0 \leq X \leq 4)$.

14M CO3 L1

OR

6. If the masses of 300 students are normally distributed with mean 68 kgs and standard deviation 3 kgs , how many students have masses
(i) Greater than 72 kg
(ii) less than or equal to 64 kg
(iii) Between 65 kg and 71 kg inclusive.
14M CO3 L1

UNIT-IV

7. Experience had shown that 20% of a manufactured product is of the top quality. In one day's production of 400 articles only 50 are of top quality. Test the hypothesis at 0.05 levels.

14M CO4 L4

OR

8. In two large populations, there are 30%, and 25% respectively of fair haired people. Is this difference likely to be hidden in samples of 1200 and 900 respectively from the two populations?

14M CO4 L1

UNIT-V

9. A random sample of six steel beams has a mean compressive strength of 58,392 pounds per square inch with a standard deviation of 648 pounds per square inch. Use this information and the level of significance $\alpha=0.05$ to test whether the true average compressive strength of the steel from which this sample came is 58,000 pounds per square inch, Assume normality.

14 M CO5 L4

OR

10. In one sample of 8 observations from a normal population, the sum of the squares of deviations of the sample values from the sample mean is 84.4 and in another sample of 10 observations it was 102.6. Test at 5% level whether the populations have the same variance.
\square

I| B.Tech. II Semester Supplementary Examinations April 2023

Applied Thermodynamics-I

(Mechanical Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

1. An air standard Otto cycle has a compression ratio of 8. At the start of the compression process, the temperature is $27^{\circ} \mathrm{C}$ and the pressure is 1 bar . If the maximum temperature of the cycle is $1080^{\circ} \mathrm{C}$. Calculate i) The heat supplied per kg of air, ii) The network done per kg of air, iii) The thermal efficiency of the cycle.

OR

2. a) List any three principle factors that influence engine performances? And explain them.
b) What are Air standard cycles? What are the assumptions for Air standard cycles?

UNIT-II

3. a) Draw the neat sketch of fuel pump for C.I Engine?
b) How the internal combustion engines are classified?

OR

4. a) Sketch and explain Mist type lubrication system.
b) Describe about air injection system.

7M CO1 L1
$7 \mathrm{M} \mathrm{CO1} \mathrm{L1}$

7 M CO2 L2
7M CO2 L1

7 M CO2 L2
$7 \mathrm{M} \mathrm{CO2}$ L2

UNIT-III

5. What causes the knock in a C.I engine? In which art of the combustion processes (beginning or the end) does it occur?

14M CO3 L1
OR
6. a) Define pre ignition? Explain with diagram.
b) Discuss the need for air movement in Cl engines.

7 M CO3 L1
7 M CO3 L2

UNIT-IV

7. A single cylinder 4-stroke cycle engine is fitted with a rope brake. The dia of the brake wheel is 600 mm and rope dia is 26 mm . the dead load on the brake is 200 N and the spring balance reads 30 N . If the engine runs at 450 rpm what will be the brake power of the engine?

OR

8. a) Explain the measurement of brake power by using Rope Brake Dynamometer.
b) How do you determine frictional losses and indicated horse power?

UNIT-V

9. An air compressor has a piston displacement of $2200 \mathrm{~cm}^{3}$ with a clearance of 5%. It receives air at 110 kPa . There is a pressure drop of 3.5 kPa through the suction valves. The discharge valves also leaks and a drop of 5% occurs in delivery pressure. Using $n=1.35$, calculate and plot the volumetric efficiency for the discharge pressure of $350,700,1000,1500$, 2000 and 2500 kPa .

OR

10. a) List out the advantages and disadvantages of use of centrifugal air compressor.

7M CO5 L1
b) Derive the condition for minimum work required in reciprocating compressor?

