Hall Ticket Number :								$\overline{}$
Code: 19A343T			<u> </u>			•	R-19	

Il B.Tech. Il Semester Supplementary Examinations July/August 2022 **Dynamics of Machinery**

(Mechanical Engineering)

Max. Marks: 70 Time: 3 Hours

Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

		Marks	СО	Blooms Level
	UNIT-I			2010.
1. a	Explain the Limiting angle of Friction	07M	CO1	L2
b	Describe the friction circle and friction axis.	07M	CO1	L1
	OR			
2.	A 150 mm diameter valve, against which a steam pressure of 2 MN/m ² is acting, is closed by means of a square threaded screw 50 mm in external diameter with 6 mm pitch. If the coefficient of friction is 0.12, Find the torque required to turn the handle.	14M	CO1	L3
	UNIT-II	1-111	COT	Lo
3.				
ა.	Explain the differential band brake with neat sketch and also discuss the self-locking condition of it.	14M	CO2	L2
	OR			
4.	The turbine rotor of a ship has a mass of 8 tonnes and a radius of gyration 0.6 m. It rotates at 1800 r.p.m. clockwise, when looking from the stern. Determine the gyroscopic couple, if the ship travels at 100 km/hr and steer to the left in a curve of 75 m radius.	14M	CO2	L3
	UNIT-III		002	
5.	Describe the following briefly:			
•	1. Sensitiveness, 2. Isochronism, and 3. Hunting.	14M	CO3	L1
	OR			
6. a		07M	CO3	L1
t	A horizontal cross compound steam engine develops 300 kW at 90 r.p.m. The coefficient of fluctuation of energy as found from the turning moment diagram is to be 0.1 and the fluctuation of speed is to be kept within ± 0.5% of the mean speed. Find the weight of the flywheel required, if the radius of			
	gyration is 2 meters.	07M	CO3	L3
	UNIT-IV			
7.	Explain the 'static balancing' and 'dynamic balancing'. State the necessary conditions to achieve them.	14M	CO4	L2
	OR			
8.	A, B, C and D are four masses carried by a rotating shaft at radii 100, 125, 200 and 150 mm respectively. The planes in which the masses revolve are spaced 600 mm apart and the mass of B, C and D are 10 kg, 5 kg, and 4 kg respectively. Find the required mass A and the relative angular settings of			
	the four masses so that the shaft shall be in complete balance UNIT-V	14M	CO4	L3
9.	Develop an expression for the natural frequency of free longitudinal vibrations by equilibrium method.	14M	CO5	L5
	OR			
10.	Evaluate the whirling speed of a shaft 20 mm diameter and 0.6 m long carrying a mass of 1 kg at its mid-point. The density of the shaft material is 40 Mg/m³, and Young's modulus is 200 GN/m². Assume the shaft to be			
	freely supported.	14M	CO5	L6

Hall Ticket Number :						
						R-19

Code: 19A342T

Max. Marks: 70

II B.Tech. II Semester Supplementary Examinations July/August 2022

Fluid Mechanics and Hydraulic Machines

(Mechanical Engineering)

		Answer any five full questions by choosing one question from each unit (5x14		Marks)	
		*****	Marks	СО	Blooms Level
	,	UNIT-I	-1.4	004	1.4
1.	a)	What are the important fluid properties? Write their units?	7M	CO1	L1
	b)	Distinguish between simple manometer and a differential manometer. OR	7M	CO1	L2
2.	a)	What is the principle on which a piezometer works? Draw a neat sketch and			
	,	explain	7M	CO1	L1
	b)	Explain the terms: i). Path line ii) Stream line iii). Streak line. UNIT-II	7M	CO1	L2
3.		Derive the Euler's equation of motion along a streamline	14M	CO2	L2
Ο.		OR	1 1101	002	
4.		Discuss the following energies associated with application of Bernoulli's equation in a fluid flow: i). Potential energy ii). Kinetic energy iii). Pressure energy.	14M	CO2	L2
		UNIT-III			
5.		What is a runoff river plant? What are the different parts and arrangements a such plants? Draw a neat sketch and explain. OR	14M	CO3	L2
6.		A jet of water of 60mm diameter strikes a curved vane at its Centre with a velocity if 18 m/s. The curved vane is moving with a velocity of 6 m/s in the directions of jet. The jet is deflected through an angle of 1650. Assuming the plate to be smooth jet i) Thrust in the plate in the direction if jet ii) Power of the jet iii) Efficiency of the jet	14M	CO3	L3
		UNIT-IV			
7.		A Pelton wheel has a mean bucket speed of 12m /sec and is supplied with water at a rate of 750 lit/sec under a head of 35m. If the bucket deflects the jet through an angle of 160°, find the power developed by the turbine and its hydraulic efficiency. Take the Cv as 0.98.Neglect the friction in the bucket.	14M	CO4	L3
		OR	1 TIVI	004	LO
8.		What are the operating characteristic curves of hydraulic turbines? Sketch them and explain their features and applications. UNIT-V	14M	CO4	L2
9.		Define a centrifugal pump. Explain the working of a single-stage centrifugal pump with sketches	14M	CO5	L2
4.0		OR			
10.		What do you mean by manometric efficiency, mechanical efficiency and overall efficiency of a centrifugal pump?	14M	CO5	L2

Time: 3 Hours

Hall Ticket Number :						l	

Code: 19A341T

II B.Tech. II Semester Supplementary Examinations July/August 2022

Manufacturing Processes

(Mechanical Engineering)

Max. Marks: 70 Time: 3 Hours

Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

		Marks	СО	Blooms Level
	UNIT-I			
1.	Explain the steps involved in making a casting? OR	14M	CO1	L2
2. a	What is the gating ratio? What are pressurized and non pressurized gating systems?	08M	CO1	L2
b	Define the terms (i) Chaplets (ii) Chills (iii) Core	06M	CO1	L1
	UNIT-II			
3.	Describe with neat sketch the various components of Oxy Acetylene gas welding equipment and explain the welding process?	14M	CO2	L2
	OR			
4.	Sketch and explain 'plasma arc welding process'. Give its advantages and applications in detail?	14M	CO2	L2
	UNIT-III			
5. a	What are specific merits of cold working over hot working?	06M	CO3	L2
b	Differentiate blanking and piercing with reference to press working processes?	08M	CO3	L4
	OR			
6. a	Explain the tube drawing process with neat sketch?	06M	CO3	L4
b	Describe wire drawing and cup drawing processes	M80	CO3	L2
	UNIT-IV			
7. a	How does extrusion different from rolling? Comment.	06M	CO4	L4
b	Classify 'forging defects' and give the necessary remedies. OR	M80	CO4	L4
8.	Explain with neat sketches the process of 'smith forging' and 'drop forging'?	14M	CO4	L4
	UNIT-V			
9. a		08M	CO5	L4
b	Identify various properties of plastics?	06M	CO5	L2
	OR			
10.	Explain transfer moulding. Discuss its advantages and limitations? ***	14M	CO5	L4

R-19

						Т		7			
Hall Ticke	t Number	:						Г	D 1	0]
Code: 19A	_	_			_			L	R-1		
II B.T	ech. II Se Nun		Metho		obabil	ity (ust 202	2	
Max. Ma Answer ar		question	•		e questic	,	om each	ı unit (5x	Time: 3 14 = 70 N		
									Marks	СО	Blooms Level
		((0.0)		NIT-I							
	ne value of	. ,	. ,			ilable					
f(x)	20 354	25 332	30 291	35 260	40 231		45 204		14M	CO1	L2
1(^)	334	332		200 PR	231		204		14101	COT	LZ
Find a pos method.	sitive root o	of $x^3 - x$	-1=0 cor	rrect to tw	vo decim	ıal pl	aces by	Bisectior	14M	CO1	L3
Given that			UN	IIT–II							
х у 7	1.0 1.1 7.989 8.4	103 8.7	781 9.12	1.4 29 9.45	1.5 51 9.7	50	1.6				
find $\frac{dy}{dx}$ an	$d\frac{d^2y}{dx^2} \text{ at (a)}$) x=1.1 (b							14M	CO2	L1
Haina Tay		aathaal fi	_	R	valuas	o f //	1 1\ and	u(4 0) for			
	lor series n	_			values	or y(1.1) and	y(1.2) foi	ſ		
the differer	ntial equation	on $\frac{dy}{dx} = y$	x + y, y(1) =	= 0.					14M	CO2	L3
				IT–III							
numbers i.	are thrown, e., X (a, b) and variand	= max (a, b). Find distribution	I the prob					l	CO3	L1
	n variable h 2), find (i) I) P(<u>4), (ii</u>) p(1-	<x<4).< td=""><td></td><td>14M</td><td>CO3</td><td>L3</td></x<4).<>		14M	CO3	L3
	s thrown 9 with the hy		es and of that the di	these 32	•	ded	a 3 or 4	4. Is this		CO4	L1
The mean	of 400 items of the sa with mea	mple is	40. Test	whether	the sam	ple l	nas com	e from a	1)	CO4	L3
Second gr	f 5 patients roup of 7 42, 56, 64	patients	from the	same hos	spital tre	ated	with me	edicine B	3		

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

. . .

OR

The number of automobiles accidents per week in a certain community are as follows: 12,8,20,2,14,10,15,6,9,4. Are these frequencies in agreement with the

belief that accident conditions were the same during this 10 week period?

medicine B increases the weight significantly?

14M CO5

14M CO5

L1

L1

Hall Ticket Number :						P_10
Code: 19A344T						K-17

II B.Tech. II Semester Supplementary Examinations July/August 2022

Applied Thermodynamics-I

(Mechanical Engineering)

			Marks	СО	Blooms Level
		UNIT-I			
1.		Sketch p-V and T-S diagrams of Diesel cycle and explain different processes.	14M	CO1	L2
		OR			
2.		In a Diesel cycle the compression ratio is 15. Compression begins at 0.1MPa & 40°C.The heat added is 1.675 MJ/Kg. Find			
		i) Maximum temperature of the cycle ii) Temperature at the end of expansion iii) Work done /kg of air iv) Cycle efficiency.	14M	CO1	L3
		UNIT-II			
3.	a)	Why is ignition required in an I.C. engine and how does it take place in diesel engines.	7M	CO2	L2
	b)	Explain ideal and actual port timing diagrams of a 2-stroke S.I engine.	7M	CO2	L2
		OR			
4.	a)	List the parts that require lubrication in an IC Engine? Explain.	7M	CO2	L2
	b)	Why the lubrication and cooling systems are provided in an I.C. engine.	7M	CO2	L2
		UNIT-III			
5.	a)	What are different ill effects of knocking?	7M	CO3	L1
	b)	Suggest the methods to minimize knocking in SI engines?	7M	CO3	L2
		OR			
6.		Draw the schematic diagrams of I-type, L-type and F-type combustion			
		chamber and compare the silent features among them.	14M	CO3	L2
		UNIT-IV			
7.		Explain the various engine performance parameters in detail.	14M	CO4	L2
		OR			
8.	a)	Define Heat Balance sheet and list out parameters considered in it.	6M	CO4	L1
	b)	Derive the basic performance parameters such as mechanical efficiency,			
		mean effective pressure, torque and volumetric efficiency.	8M	CO4	L6
		UNIT-V			
9.	a)	Illustrate the effects of clearance volume on the performance of			
		reciprocating air compressor?	8M	CO5	L3
	b)	Define brake power and indicated power of an air compressor?	6M	CO5	L1
		OR			
10.		A double acting compressor takes in air at 100 kPa and delivers it to the			
		receiver at 1000 kPa. The speed is 200 rpm, diameter is 150 mm and	4 45 4	005	
		stroke length is 220 mm. calculate the capacity of the motor required. ***	14M	CO5	L3