	Hall Ticket Number :			
	Code: 19A342T	R-19		
	II B.Tech. II Semester Supplementary Examinations December	2022		
	Fluid Mechanics and Hydraulic Machinery			
	(Mechanical Engineering)			
	Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x14 = ********	ne: 3 Hc = 70 Ma		
		Marks	со	BL
1.	UNIT–I Calculate the specific weight, specific mass, specific volume and specific gravity	,		
1.	of a liquid having a volume of 6 m^3 and weight of 44 KN.	, 14M	CO1	L3
	OR			20
2.	What are the different types of fluid flow? Explain.	14M	CO1	L1
	UNIT–II			
3.	State the assumptions made in the derivation of Bernoulli's equation and hence	;		
	derive the Bernoulli's equation.	14M	CO2	L2
	OR			
4.	A pipe of diameter 40 cm carries water at a velocity of 25 m/s. The pressures at the paint A and B are given as 20.4 N/cm ² and 22.5 (N/cm ²) respectively while			
	the point A and B are given as 29.4 N/cm ² and 22.56N/cm ² respectively while the datum head at A and B are 28 m and 30 m. Find the loss of head between A			
	and B.	14M	CO2	L3
	UNIT–III			
5.	Derive the expressions for force and work done per second by the jet when i			
	strikes a flat plate, inclined Plate, curved plate moving in the direction of the jet.	14M	CO3	L2
•	OR			
6.	What are the radial vanes? What are the velocity triangles? What are the uses their drawing for a typical case of a jet striking a moving plate?		CO3	12
	their drawing for a typical case of a jet striking a moving plate:	14101	005	LZ
	UNIT-IV			
7.	Explain the different types of the Efficiencies of a turbine.	14M	CO4	L2
	OR			
8.	With a neat sketch explain the working principle of Pelton wheel.	14M	CO4	L2
	UNIT–V			
9.	A single acting reciprocating pump has a plunger of diameter 0.3m and stroke of			
	length 0.4m. If the speed of the pump is 60 rpm and coefficient of discharge is	5 14M	CO5	12
	0.97, determine the percentage slip and actual discharge of the pump. OR	14101	005	LJ
10.	Explain following			
10.	i) Main characteristic curves ii) Operating characteristic curves iii) Muschel curves	14M	CO5	L2
	***			_

	Hall Ticket Number :			В 1	0	1
	Code: 19AE41T			R- 1		
	II B.Tech. II Semester Sup				2	
	•	omics and Financi	al Accounting			
	(C Max. Marks: 70 Answer any five full questions by cl	common to CE & ME)			Hours	
		*******		. , , , ,	vicino j	
				Marks	CO	Blooms Level
		UNIT–I				
1.	Deliberate the importance and scop	•	cs?	14M	CO1	L2
		OR				
2.	Determine the concept of cross ela	sticity of demand. Discus	ss the method to			
	measure such elasticity?			14M	CO1	L3
		UNIT-II				
3.	Define Cost. Explain the different c Analysis	ost concepts used in the	process of Cost	1 <i>4</i> M	CO2	L2
	Analysis	OR		14101	002	LZ
4.	Discuss the following					
	a) Economies of scale			7M		L2
	b) Least Cost Combination of Ir	nputs		7M	CO2	L2
		UNIT–III				
5.	Describe the features, advantages	and disadvantages of So	le trader form of			L2
	Organization?			14M	CO3	
		OR				
6.	Briefly discuss the price-output dete	rmination in monopolistic	competition.	14M	CO3	L2
		UNIT–IV				
7.	Discuss the following				004	
	a) Working Capital & Its Affectirb) NPV Method advantages and	•		7M 7M	CO4 CO4	L2 L2
	b) INF V Method advantages and	OR		7 111	004	LZ
8.	Calculate Net Present Value (NPV)	-) for both the			
0.	projects.) 101 2011 110			
	Project-A Cash i	n Project-B Cash in	D) (() () ()			
	Years flows	flows	PV@10%			
	1 2,50,000 2 1,80,000	3,50,000	0,909 0,826			
	3 1,20,000	1,80,000	0,751			
	4 1,10,000	80,000	0.683			
	5 75,000	60,000	0.621			
	5 (scrap) 50,000	40,000	0.621			
	Initial investment for the project-A; F and cost of capital assumed to be 1	· · ·	, KS.0,00,000			
				14M	CO4	L3
		UNIT-V	_			
9.	Briefly discuss various types of Acc	counts (Golden Rules of	Accounting) with	14M	CO5	L2
	examples?	OR				
10	Dofine Capital Pudgeting Evaluin H		aturas of Conital			
10.	Define Capital Budgeting. Explain the Budgeting?	ie ivalure, Scope and Fe	atures or Capital	14M	CO5	L2

		Iall Ticket Number :	R-1	9]
	С	ode: 19A341T]
		II B.Tech. II Semester Supplementary Examinations Decemb	er 202	2	
		Manufacturing Processes (Mechanical Engineering)			
	٨		lime: 3	Hours	
	A	nswer any five full questions by choosing one question from each unit (5x1	4 = 70 M	Marks)	
		*****	Marks	со	Blooms
		UNIT–I	INIAINS	00	Level
1.		Define the pattern? Sketch and Explain different types of patterns used in			
••		foundry?	14M	CO1	L1
		OR			
2.	a)	Explain the solidification process of metals and alloys?	8M	CO1	L2
	b)	Differentiate between progressive and directional solidification?	6M	CO1	L4
		UNIT–II			
3.	a)	Classify 'welding processes' and explain different types of 'weld joints'?	8M	CO2	L2
	b)	How do you classify different weld positions? Draw at least four positions?	6M	CO2	L2
		OR			
4.		What is Thermit welding? Explain the process. Also list any three		000	
		advantages and limitations	14M	CO2	L2
		UNIT–III			
5.	a)	Briefly explain the principle of rolling with neat sketches?	6M	CO3	L4
	b)	Describe two high, four high roll mills?	8M	CO3	L2
	2)	OR	om	000	
6.	a)	Explain the process of 'coining' in detail with the help of a sketch.	6M	CO3	L4
	b)	Explain in brief the defects in 'rolled products'	8M	CO3	L4
	,	·			
		UNIT–IV			
7.		Explain extrusion process and discuss forward, backward, impact extrusion			
		processes.	14M	CO4	L4
		OR			
8.		Explain open and closed die forging processes? Distinguish between them?	14M	CO4	L4
~		UNIT-V	4 4 5 4	005	1.4
9.		How components are manufactures in transferred molding process? Explain?	14M	CO5	L4
0	2)	OR Classify plastics and state their applications?	011	COF	14
0.	,	Classify plastics and state their applications?	8M 6M	CO5 CO5	L4 L2
	b)	Identify various methods available for processing of plastics?	6M	005	LZ

Hall	Ticket Number :					
Code	e: 19AC41T				R-19	
	ll B.Tech. Il Seme Numer i	ical Methods	entary Examin & Probability ion to CE & ME)	and Statistic	S	
	k. Marks: 70 wer any five full que:	stions by choosin	ng one question f	rom each unit (5	Time: 3 Hours 5x14 = 70 Marks)	
					Marks C	:0
	a root of the equated decimal places.	ion $x^3 - 4x - 9 =$	-	ection method c	orrect to 14M	1
_	uate the following(co		I R imal places) by N	lewton Raphson	method:	
(i) √.	5 (ii) ∛24		- 11		14M	1
Give	n that	UNI	T–II			
	x 1.00 y 1.000	1.051.101.0251.049	1.151.201.0721.095	1.251.301.1181.140		
find	$\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at (a) x=	1.05 (b) x=1.25			14M	2
	ax ax		R		14101	2
	uate y(0.2) and y(0.4		decimal places by	[,] Taylor's series r	nethod if	
y(x) s	satisfies $\frac{dy}{dx} = 1 - 2xy$	and $y(0) = 0$.			14M	2
		UNI	T–III			
	ntinuous random vari		, ,			
f(x)	$0 = \begin{cases} k x e^{-x}, & \text{for } x \ge 0\\ 0, & \text{otherwise} \end{cases}$			(iii) Variance	14M	3
Out o	of 800 families with	-	R how many would	you expect to ha	ave (a) 3	
boys	,(b)5 girls,(c)ei abilities for boys and	ther 2 or 3 boy	-		ne equal	3
		UNI	T–IV			
	big city 325 men mation support the c					
	ume that the number	of smokers and r	non-smokers are	•		4
An a	mbulance service cl	-	R s on the average	less than 10 m	inutes to	
reach	n its destination in e	emergency calls.	A Sample of 36	calls has a me	an of 11	
minu	tes and the variance		est the claim at 0.	05 level of signifi	cance. 14M	4
The	average breaking st			fied to be 18.5 t	housand	
•	ds .To test this sa ations obtained were	•				
	ficant?	17.05 and 1.90	o respectively. Is		•	5
From	the following data,	-)R are is any signific	ant liking in the	hahit of	
	g soft drinks among			ant inting in the	naul UI	
	Soft Drinks	Clerks	Teachers	Officers		
	Pepsi	10	25	65		
	Thumsup	15	30	65	14M	5

60

30

50

Fanta

Page **1** of **1**

14M 5

4

	ŀ	Hall Ticket Number :			
	C	ode: 19A344T	R-1	9	
	C	Il B.Tech. II Semester Supplementary Examinations Decemb	er 2022	2	
		Applied Thermodynamics-I	0. 202	_	
		(Mechanical Engineering)			
		Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x *********	Time: 3 14 = 70 M		
			Marks	СО	BL
		UNIT–I			
1.		With the help of P-V and T-S diagrams explain OTTO cycle and derive an			
		expression for air standard efficiency.	14M	CO1	L2
_		OR			
2.	a)	Elaborate the following.	014	004	
	b)	i) Exhaust blow down loss ii) Loss due to rubbing friction	6M	CO1	L2
	b)	Explain about Time loss factor and Heat loss factor with suitable diagrams.	8M	CO1	L2
3	a)	Discuss with a neat sketch, the working principle of carburetor and explain			
5.	a)	its Components.	7M	CO2	L2
	b)	What are different fuel injection systems for C.I engines? Explain any one?	7M	CO2	L1
		OR			
4.	a)	Discuss about thermostat cooling system with a neat diagram.	6M	CO2	L2
	b)	Write short notes on			
		(i) Solid Injection System, (ii) Wet sump Lubrication System	8M	CO2	L2
		UNIT–III			
5.		Describe with suitable sketches the combustion phenomenon in S.I		000	
		engines and explain the two phases of combustion. OR	14M	CO3	L2
6	2)	Write notes on (i) fuel rating and (ii) anti-know additives.	714	CO3	10
0.	a) b)	List out the requirements of good combustion chamber in SI engines.	7M 7M	CO3	L2 L2
	0)	UNIT-IV	7 101	005	LZ
7.		A rope brake was used to measure the brake power of a single cylinder 4-			
		stroke petrol engine. It was found that the torque due to brake load is 175			
		N-m and the engine runs at 500 rpm. Determine the brake power			
		developed by the engine?	14M	CO4	L3
0		OR			
8.		List out various methods for measurement of friction power and explain Morse method of determination of friction power.	14M	CO4	L1
		UNIT-V			
9.		Derive an expression for the isothermal efficiencies of a reciprocating			
		compressor in terms of the pressure ratio.	14M	CO5	L6
		OR			
10.	a)	List the various types of rotary compressors?	7M	CO5	L1
	b)	Discuss with a neat sketch, the working of a roots blower.	7M	CO5	L2

4		R-19	
(Lode: 19A343T Il B.Tech. Il Semester Supplementary Examinations December 20	022]
	Dynamics of Machinery		
	(Mechanical Engineering)	ach. II Semester Supplementary Examinations December 2022 Dynamics of Machinery (Mechanical Engineering) s: 70 Time: 3 Hours Immediate of the second	
	Answer any five full questions by choosing one question from each unit $(5x14 = 7)$		
	UNIT–I	Marks	CO
	An effort of 1500 N is required to just move a certain body up an inclined plane of angle 12°, force acting parallel to the plane. If the angle of inclination is increased to 15°, then the effort required is 1720 N. Find the weight of the body		
	and the coefficient of friction.	entary Examinations December 2022 s of Machinery Cal Engineering) Time: 3 Hours g one question from each unit (5x14 = 70 Marks) ******** -I ve a certain body up an inclined plane e plane. If the angle of inclination is is 1720 N. Find the weight of the body type a certain body up an inclined plane e plane. If the angle of inclination is is 1720 N. Find the weight of the body type a certain body up an inclined plane e plane. If the angle of inclination is is 1720 N. Find the weight of the body type a certain body up an inclined plane e plane. If the angle of inclination is is 1720 N. Find the weight of the body type a certain body up an inclined plane e plane. If the angle of inclination is is 1720 N. Find the weight of the body the core of the shaft of a marine engine. It is f a rope brake dynamometer opeller shaft of a marine engine. It is f 20 meters at 120 r.p.m. If the shaft is nd 300 mm internal diameter, find the dity for the shaft material as 80 GPa. -III engine is drawn to the following scales: angle, 1 mm = 1°. The turning moment tion of the engine and the areas above taken in order are 295, 685, 40, 340, uivalent to a mass of 36 kg at a radius befficient of fluctuation of speed when the elimitations of a Watt governor? -IV g couple (c) Hammer blow. thas rotated 60° from top dead center. -V neat sketches. 14M CO3 L1	
2.	Develop an expression for frictional torque required for conical pivot bearing considering uniform pressure theory.	14M	CO1
8. a)	Define the Brake and list the important characteristics of brake material.	7M	CO2
b)	List out the various types of brakes.	7M	CO2
. a)	_	714	core
b)	A torsion dynamometer is fitted to a propeller shaft of a marine engine. It is found that the shaft twists 2° in a length of 20 meters at 120 r.p.m. If the shaft is hollow with 400 mm external diameter and 300 mm internal diameter, find the power of the engine. Take modulus of rigidity for the shaft material as 80 GPa.		
5.	The turning moment diagram for a petrol engine is drawn to the following scales: Turning moment, 1 mm = 5 N-m; crank angle, 1 mm = 1°. The turning moment diagram repeats itself at every half revolution of the engine and the areas above and below the mean turning moment line taken in order are 295, 685, 40, 340, 960, 270 mm ² . The rotating parts are equivalent to a mass of 36 kg at a radius of gyration of 150 mm. Determine the coefficient of fluctuation of speed when the engine runs at 1800 r.p.m.	14M	CO3
5.	-		
	the case of a Watt governor. What are the limitations of a Watt governor?	14M	CO3
		14M	CO4
3.	A single cylinder reciprocating engine has speed 240 r.p.m., stroke 300 mm, mass of reciprocating parts 50 kg, mass of revolving parts at 150 mm radius 37 kg. If two third of the reciprocating parts and all the revolving parts are to be balanced, find : 1. The balance mass required at a radius of 400 mm, and 2. The residual unbalanced force when the crank has rotated 60° from top dead center.	14M	CO4
		4 4 5 4	COF
).	Describe the types of free vibrations with neat sketches.	1411	005