\square

Code: 19A441T

II B.Tech. II Semester Supplementary Examinations February 2022

Analog IC Applications

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

```
*********
```

Marks CO

UNIT-I

1. a) Draw and explain the block diagram of op-amp
b) Explain briefly about DC Characteristics of op-amp

OR

2. a) Mention the characteristics of Ideal and Practical op-amp
b) Explain the working of non-Inverting op-amp and derive the equation of its gain

$7 M$	CO1	L2
$7 M$	CO1	L2
$6 M$	CO1	L2
$8 M$	CO1	L3

UNIT-II

3. a) What is an instrumentation amplifier? Explain the working of three op-amp instrumentation amplifier and derive its gain.
b) Explain the operation of Integrator using op-amp

OR

4. a) Explain the operation of Current to Voltage Converter using op-amp
b) Design an adder circuit using an op-amp to get output expression as $\mathrm{V}_{0}=-\left(0.1 \mathrm{~V}_{1}+\mathrm{V}_{2}+10 \mathrm{~V}_{3}\right)$

UNIT-III

5. a) Design Astable multivibrator using IC 741 op -amp and calculate its pulse width
b) Derive the expression for log and antilog computation using op-amp with neat circuit diagram

OR

6. a) Explain the working of Schmitt trigger using IC 741 op -amp
b) Design first order LPF at a cutoff frequency of 2 KHz and pass band gain of unity and plot the frequency response curve for the designed filter

7M CO3

UNIT-IV

7. a) Design a Monostable multivibrator using 555 timer to produce a pulse width of 100 msec

6M CO4 L3
b) Explain working of PLL using appropriate block diagram and explain any one application of PLL

8M co

OR

8. a) Explain the functional block diagram of 555 timer and mention its features.
b) Explain the operation of Missing heart beat detector using IC 555 timer
L2

UNIT-V

9. a) Explain the working of R-2R ladder type DAC with neat diagram and write its limitations

9M cos L2
b) What would be the output voltage produced by a D/A converter whose output range is 0 to 10 V with a binary number 10101100 (for an 8 -bit DAC)

5M CO5 L3

OR

10. a) Draw and explain the operation of dual slope ADC
$7 \mathrm{M} \mathrm{CO5}$
b) Explain the operation of parallel comparator type ADC with neat circuit diagram
\square

Code: 19A442T

|| B.Tech. II Semester Supplementary Examinations February 2022

Control Systems

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit (5×14 = 70 Marks)

UNIT-I

1. a) Explain the following terms w.r.t closed loop control systems
i. Plant
ii. Reference input
iii. Error detector
iv. Feedback path elements
v. Controller
b) Reduce the given block diagram and hence obtain the transfer function C(s)/R(s)

OR
2. a) State and explain Mason's gain formula for the signal flow graph. 7M
b) Determine the transfer function $\mathrm{C}(\mathrm{s}) / \mathrm{R}(\mathrm{s})$ for the following block diagram

UNIT-II

3. Sketch the root locus plot of the system whose open loop T.F. is given by $G(s) H(s)=\frac{K}{s(s+4)\left(s^{2}+4 s+13\right)}$.

OR

4. a) Define the following terms
i. absolute stability ii. marginal stability iii. conditional stability
b) By means of RH criterion determine the stability of the system represented by the characteristic equation $s^{4}+2 s^{3}+8 s^{2}+4 s+3=0$
c) State the advantages of RH Stability criterion?

UNIT-III

5. a) Show that Bode plots of a system with transfer function having many factors can be obtained by adding the Bode plots of individual factors
b) Show that in Bode magnitude plot the slope corresponding to a quadratic factor is $-40 \mathrm{~dB} / \mathrm{dec}$.
6. A certain system transfer function is $G(s) H(s)=\frac{75(1+0.2 s)}{s\left(s^{2}+16 s+100\right)}$ using Bode plots, find gain margin and phase margin. Comment on stability.

UNIT-IV

7. A unity feedback system has an open loop transfer function $G(s)=\frac{K}{S(1+2 S)}$ Design a suitable lag Compensator so that phase margin is 40° and the steady state error for ramp input is less than or equal to 0.2

OR

8. a) What are the deferent types of compensators available? Explain briefly.
b) Explain the deferent steps to be followed for the design of lead compensator using Bode plot.

UNIT-V

9. a) What are the properties of state transition matrix?
b) Given $\dot{X(t)}=\left[\begin{array}{cc}0 & 1 \\ -2 & -3\end{array}\right]\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]+\left[\begin{array}{l}0 \\ 1\end{array}\right] u(t)$

Find the unit step response when $X(0)=\left[\begin{array}{l}1 \\ 1\end{array}\right]$

OR

10. Find the Unit step response for the following system with initial conditions

$$
\begin{aligned}
& \dot{X(t)}=\left[\begin{array}{cc}
0 & 1 \\
-6 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+u(t)\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& Y(t)=\left[\begin{array}{ll}
3 & 0
\end{array}\right] X(t)
\end{aligned}
$$

II B.Tech. II Semester Supplementary Examinations February 2022

Field Theory and Transmission Lines

(Electronics and Communication Engineering)

Max. Marks: 70
Answer any five full questions by choosing one question from each unit (5×14 = 70 Marks)

Time: 3 Hours

Marks CO | Blooms |
| :---: |
| Level |

UNIT-I

1. a) Determine the electric flux density \mathbf{D} everywhere of a sphere with radius a having uniform charge density $\rho_{0} \mathrm{C} / \mathrm{m}^{3}$ and sketch the $|\mathbf{D}|$ against the radius of the sphere.

10M CO1
b) Two point charges $-4 \mu \mathrm{C}$ and $5 \mu \mathrm{C}$ are located at $(2,-1,3)$ and $(0,4,-2)$, respectively. Find the potential at (1, 0, 1), assuming zero potential at infinity.

OR

2. a) A square plate described by $-2 \leq x \leq 2,-2 \leq y \leq 2$, $z=0$ carries a charge $12|y| \mathrm{mC} / \mathrm{m}^{2}$. Find the total charge on the plate and the electric field intensity at $(0,0,10)$.
b) State and explain the Gauss's law? find the electric field intensity of an infinite sheet of uniform charge $\rho_{\mathrm{s}} \mathrm{C} / \mathrm{m}^{2}$ lying on the $\mathrm{x}=0$ plane.

8M CO1 L1,L3

UNIT-II

3. a) Explain the convection and conduction currents with suitable examples and equations?
b) If $J=\left(1 / r^{3}\right)\left(2 \cos \theta a_{r}+\sin \theta a_{\theta}\right) A / m^{2}$, calculate the current passing through
(i) A hemispherical shell of radius $20 \mathrm{~cm}, 0<\theta<\pi / 2,0<\varnothing<2 \pi$
(ii) A spherical shell of radius 10 cm

OR

4. a) Explain the polarization in dielectrics?
b) A coil is made of 150 turns of copper wire wound on a cylindrical core. If the mean radius of the turns is 6.5 mm and the diameter of the wire is 0.4 mm , calculate the resistance of the coil.

6 M CO 2

UNIT-III

5. a) Define magnetic scalar and vector potentials?

4 M CO
b) A charged particle of mass 1 kg and charge 2 C starts at the origin with zero initial velocity in a region where $\mathrm{E}=3 \mathrm{a}_{\mathrm{z}} \mathrm{V} / \mathrm{m}$.
Find the following:
(i) The force on the particle
(ii) The time it takes to reach point $\mathrm{P}(0,0,12 \mathrm{~m})$
(iii) Its velocity and acceleration at P
(iv) Its kinetic energy at P

10M CO3

OR

6. a) Explain the inconsistency in ampere's law and write the final Maxwell equations

8M CO3 L2
b) In free space, $E=20 \cos (\omega t-50 x) a_{y} V / m$. Calculate
(i) J_{d}
(ii) H
(iii) ω
6 M CO 3
L3

UNIT-IV

7. a) Define reflection and transmission coefficients and explain their properties for different mediums?

7M CO4
b) A plane wave travelling in air is normally incident on a material with $\epsilon_{r}=4$ and $r=1$. Find the reflection and transmission coefficients.

OR

8. a) Derive the relation between E and H in a Uniform plane wave
b) State and prove Poynting theorem?

7 M CO

UNIT-V

9. a) At 60 MHz , the following characteristics of a lossy line are measured: $Z_{0}=50 \quad \alpha=0.04 \mathrm{~dB} / \mathrm{m}, \beta=2.5 \mathrm{rad} / \mathrm{m}$. Calculate R, L, C, and G of the transmission line.

7M CO4 L1,L2
b) Define Smith Chart and explain the various applications of smith chart in Transmission line?

6M CO5 L1

OR

10. a) What are the applications of transmission lines?
b) A telephone line has $R=30 / \mathrm{km}, \mathrm{L}=100 \mathrm{mH} / \mathrm{km}, G=0$, and $\mathrm{C}=20 \mu \mathrm{~F} / \mathrm{km}$. At $\mathrm{f}=1 \mathrm{kHz}$, obtain:
(i) The characteristic impedance of the line
(ii) The propagation constant
(iii) The phase velocity

9M CO5

Code: 19AC44T

|| B.Tech. II Semester Supplementary Examinations February 2022

Life Sciences for Engineers

(Common to EEE \& ECE)

Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$

Marks CO | Blooms |
| :---: |
| Level |

UNIT-I

1. a) What is chloroplast? Explain in detail about its structure and functions and also draw the labeled diagram?
b) What is molecular taxonomy? Explain its role in the classification of living organisms

OR

2. Explain the differences between prokaryotes and eukaryotes?
$14 \mathrm{M} \quad 1$
1

UNIT-II

3. a) Describe the structure of hemoglobin and draw the labeled diagram?
b) What are antibodies and elaborate its structure with suitable diagram?

$7 M$	2	1
$7 M$	2	2

OR
4. Write in detail about the structure and functions of nucleic acids?

14M 2
2

UNIT-III

5. What is photosynthesis and explain the mechanism of photosynthesis?

14M 3

OR

6. a) Elaborate oxidative phosphorylation?
b) Write the industrial applications of enzymes with suitable examples?

7M $\quad 3$
1

UNIT-IV

7. What is cell division? Elaborate mitosis and meiosis with suitable diagrams?

14M 4

OR

8. a) What are the three laws of inheritance with examples?

7M 4
b) What is RNA? Explain its structure and functions and draw labeled diagram?

UNIT-V

9. a) Define transgenecis and explain the applications of transgenic microbes?

7M 5
b) What are biosensors and biochips and add a note on their applications?
$7 \mathrm{M} \quad 5$

OR

10. What is recombinant DNA technology and explain various steps involved in recombinant DNA technology?
\square

Code: 19AC42T

|| B.Tech. II Semester Supplementary Examinations February 2022

Numerical Methods and Transform Techniques

(Common to EEE \& ECE)

Time: 3 Hours
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) By using Regula - False method, determine an approximate root of the equation $x^{4}-x-10=0$ that lies between 1.8 and 2. Carry out three approximations.

7M 1
3
b) Solve $x^{3}=2 x+5$ for a positive root by iteration method.

7M 1

OR

2. a) Determine ${ }^{2 \times+}$) of the following table using Newton's forward formula

$\frac{y}{x}(54$	50	60	70	80
y	205	225	248	274

b) The population of a town is as follows

years	1921	1931	1941	1951	1961	1971
population	20	24	29	36	46	51

Estimate the increase in population during the period 1955 to 1961.
7M 1
3

UNIT-II

3. a) Evaluate $\int_{0}^{-5} \frac{a^{x}}{0+x+5}$ by rapezoidel rule using 11 coordinates.

OR

 $\frac{d y}{d x}=y^{2}+x, \quad y(0)=1$

b) $\begin{aligned} & \frac{d y}{d x}=1+\begin{array}{l}-K \text { third orde } \\ x y \text { and } y(0)\end{array}=1 ?\end{aligned}$

7M 2
3

UNIT-III

5. a) Determine the Taylor's series to represent the function $\frac{-z^{2}-1}{(z+2)(z+3)}$, in the region $\quad|z|<2$
b) [he region the Laurent seri

Jetermin $\frac{z^{2}-6 z-1}{}$ es expansion of the function $f(z)=\overline{(z-1)(z-3)(z+2)}$ in the region $3<|z+2|<5 \quad 7 M \quad 3 \quad 3$
6. a) Determine the poles and residues at each pole $-\frac{z e^{2}}{(z-1)^{3}}$

the poles and res

b) Evaluate $f_{x} \frac{4-3 z}{z(z-1)(z-2)} d z$ where c idues at eact c circle $|z|=3 / 2$ using residue theorem.

UNIT-IV

b) Using Four ${ }_{\text {if - inte }}{ }^{\text {gral }}{ }_{\text {rar }}^{\text {rar }}$ sh ${ }^{\text {raw }}$
d $\epsilon-\cdots\left\{\begin{array}{l}\text { o, }\end{array}\right.$

$$
\int_{0}^{1} \frac{1-\cos }{-\lambda \lambda} \sin x \lambda d \lambda= \begin{cases}\frac{\pi}{2}, & \text { if } 0<x< \\ 0, & \text { if } x>\pi\end{cases}
$$

7M 4
3
8. a) Determine the Fourier sine and cosine transforms of $f(x)=\frac{e^{-}-a x}{x}$ and deduce tha $\int_{0}^{0} \frac{e^{-a x}-e^{-b x}}{x} \operatorname{sins} x d x \mathrm{t}=\tan ^{-1}\{\mathrm{~s} / \mathrm{a}\}-\mathrm{tna}^{-1}\{\mathrm{~s} / \mathrm{b}\}$.
b) Determine the Fourier cosine transforms of $f(x)=e^{-a x} \operatorname{cosax}$

UNIT-V

9. a) Showthat $Z(\cos n \theta)=\frac{z(z-\cos \theta)}{z^{2}-2 z \cos \theta+1}$ and $Z(\sin n \theta)=\frac{z \sin \theta}{z^{2}-2 z \cos \theta+1}$ 7M 5
b) Solve the difference equation using Z-transform $y(n+2)+5 y(n+1)+$ $4 y(n)=2^{n}$ given that $y(0)=1, y(1)=-4$.

OR
10. a) Using convolution, determine Z-Transform of $\left[\frac{z^{2}}{(z-1)(z-3)}\right]$
b) Using the Z-transform, solve $u_{n+2}+4 u_{n+1}+3 u_{n}=3^{n}$ with $u_{0}=0$, $\mathrm{u}_{1}=1$

ANNAMACHARYA INSTITUTE OF TECHNOLOGY \& SCIENCES, RAJAMPET (AUTONOMOUS)

II B.Tech I \& II Semesters CSE \& ECE Mandatory Course Supplementary Examination 19AC37T, 19AC47T-Contitution of India
H.T. No:-
1 Define the term 'Constitution', and write a detailed note on the 'Preamble' of Indian Constitution.
2 What are 'Fundamental Rights'? What is their importance according to 20M
Indian Constitution?
3 Explain the powers and functions of the Supreme Court. 20M
4 How are the powers distributed between the Centre and State in Indian 20M
Constitution?
5 Write in detail about the role of Chief Minister and Council of Ministers. 20M
6 What is called 'Local Administration'? Explain about the Panchayat Raj 20MSystem in India.
7 Write about the roles and responsibilities of the Chief Election 20MCommissioner of India.
8 Write about the National Commission for Backward Classes. 20M
\square
Code: 19A443T
|| B.Tech. II Semester Supplementary Examinations February 2022

Analog Communication Systems

(Electronics and Communication Engineering)
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Explain the filter method for SSB-SC generation

6M CO1
b) An audio baseband signal is described as
m (t$)=30 \sin (5000 \mathrm{t})$ amplitude modulated by a carrier which is described as $C(t)=65 \sin (500000 \mathrm{t})$.
(i) Draw the spectrum of amplitude modulated wave.
(ii) What is modulation index?
(iii) Find the sideband frequencies.
(iv) What is transmission bandwidth of the AM wave?

8M CO1

OR

2. a) With a neat circuit diagram, explain the principle of envelope detection of an amplitude modulated wave
b) When carrier wave of 1 KW is modulated using a sinusoidal signal with percentage of modulation 50%, how much the AM transmitter generates? To what value will this power change if it is simultaneously modulated by another signal to the extent of 80% ? What will be the percentage saving in power if the carrier and one of the sidebands are suppressed before transmission?

UNIT-II

3. a) Explain the Armstrong method of FM generation.
b) A single tone FM signal is given by

$$
s(t)=10 \cos \left(16 \pi \times 10^{6} t+20 \sin 2 \pi \times 10^{3}\right)
$$

Find the modulation index, modulating frequency, deviation, carrier frequency, and the power of the FM signal.

8 M CO 2

OR

4. a) Explain with suitable diagram, how the Narrow band FM signal may be generated.

6 M CO 2
b) A certain sinusoid at a frequency $f m \mathrm{~Hz}$ is used as the modulating signal in both a conventional AM system and a FM system. When modulated. The peak frequency deviation of the FM system is set to three times the bandwidth of the AM system. The magnitudes of those sidebands spaced at $\pm f m \mathrm{~Hz}$ from the carrier in both systems are equal, and the total average powers are equal in both systems. Determine i) Modulation index of the FM system
ii) Modulation index of the AM system.

UNIT-III

5. a) Discuss the role of pre emphasis and de-emphasis in commercial FM
7M CO3 L5
b) Calculate the SNR for SSB-SC signal. Consider white input noise
7M CO3 L5

OR

6. a) Compare AM and FM by considering noise.
$6 \mathrm{M} \mathrm{CO} ~ \mathrm{~L} 5$
b) Give the output power appearing at the output of an RC low pass filter of cutoff frequency 'fc' when white noise of PSD NO/2 is input to it.

UNIT-IV

7. a) With suitable block diagram explain Super-heterodyne receiver.
b) List out the ideal characteristics of a receiver.
10M CO4 L1
4 M CO4 L1

OR

8. a) Explain TRF receiver.
b) With neat sketch explain Variable reactance type FM transmitter
7M CO4 L1

UNIT-V

9. a) With neat sketched, explain briefly the basic principle of FDM.
b) Describe with suitable method of generation of PWM and PPM signal.
7M CO5 L4
7M CO5 L4

OR

