	На	all Ticket Number :															1
		de: 19A441T	<u> </u>		1	1		1	1	1	1	1	_1		R-19)	
		II B.Tech. II Ser	nest	er S	upp	olen	nent	ary	Exai	mir	natio	ns Fe	ebru	ary	2022		
					• •			ppli						,			
		(Ele	ctroi	nics	and	d Čc	mm	unic	atio	n Ei	ngine	erin	g)				
		ax. Marks: 70 swer any five full que	stion	s by	chc		g on *****	•	estio	n fro	om e	ach ı	unit (ne: 3 F = 70 M		
															Marks	со	Blooms Level
						UN	IT–I										LOVOI
1.	a)	Draw and explain the	e bloc	k dia	agrar	n of d	op-an	np							7M	CO1	L2
	b)	Explain briefly about	DC C	Chara	acter	istics	of o	o-am	р						7M	CO1	L2
_						0											
2.	a)	Mention the characte							•	•					6M	CO1	L2
	b)	Explain the working	of nor	ו-Inv	ertin	• •		and	deriv	e th	e equ	ation	of its	gain	8M	CO1	L3
3.	a)	What is an instrum	ontoti	<u>on</u> 7	ampli		T–II Evo	lain t	ho w	ork	ina o	f thro		amn			
5.	a)	instrumentation amp			•		•				ing o	i une	e op-	amp	8M	CO2	L3
	b)	Explain the operation					-	amp							6M	CO2	L2
	~)					0									••••	002	
4.	a)	Explain the operation	n of C	urre	nt to	Volta	age C	onve	rter u	usin	g op-a	amp			7M	CO2	L4
	b)	Design an adder circ		ing a	an op	o-am	p to g	jet ou	Itput	exp	ressic	on as					
		$V_0 = -(0.1V_1 + V_2 + 10V_1)$	3)												7M	CO2	L6
Б	2)	Docian Actoble multi	vibrot	oru			T-III		and		ouloto	ito n		idth	714	000	10
5.	a) b)	Design Astable multi			•		•	•				•			7M	CO2	L3
	b)	Derive the expressic circuit diagram		iog	anu	anuic	ly co	mput	alion	usi	ng op	p-amp	, with	neat	7M	CO2	L3
						0	R									002	
6.	a)	Explain the working	of Sch	nmitt	trigg	ger us	sing l	C 74	1 op-	amp	C				7M	CO2	L2
	b)	Design first order LP	F at a	cute	off fre	eque	ncy o	f 2K⊦	lz an	d pa	ass ba	and ga	ain of	unity			
		and plot the frequence	cy res	pon	se cu			e des	igneo	d filt	er				7M	CO3	L6
-	、						T–IV										
7.	a)	Design a Monostable 100 msec	e mui	tividi	rator	usin	g 55t	o time	er to	proc	duce a	a puis	se wid	th of	6M	CO4	L3
	b)	Explain working of F	NI u	sina	ann	ronria	ate h	lock (diaor	am	and e	volai	n anv	one		004	LU
	0)	application of PLL		onig	upp	opin			alagi	am	una (npiai	in any	one	8M	CO4	L2
						0	R										
8.	a)	Explain the functiona	l bloc	k dia	agrar	n of s	555 t	imer a	and r	nen	tion it	s feat	ures.		7M	CO4	L2
	b)	Explain the operation	n of M	lissir	ng he	eart b	eat d	etect	or us	ing	IC 55	5 time	ər		7M	CO4	L2
_			. –				T–V							_			
9.	a)	Explain the working limitations	of R-	2R I	adde	er typ	e DA	AC wi	th ne	eat o	diagra	am an	nd writ	e its		005	L2
	b)			t vol	taga	nrod	lucod	byc	۸/ח	~~~	ovorto	or who		itout	9M	CO5	LZ
	D)	What would be the or range is 0 to 10V wit	•		•	•		•					use o	Jipui	5M	CO5	L3
						0										200	
10.	a)	Draw and explain the	e opei	ratio	n of o	dual	slope	ADC	;						7M	CO5	L2
	b)	Explain the operation	n of pa	arall	el co	mpar	ator	type /	ADC	with	n neat	circu	it diag	Iram	7M	CO5	L2
						*	**EN	D***									

- OR
- 2. a) State and explain Mason's gain formula for the signal flow graph. 7M
 - b) Determine the transfer function C(s)/R(s) for the following block diagram

UNIT–II

3. Sketch the root locus plot of the system whose open loop T.F. is given by $G(s)H(s) = \frac{K}{s(s+4)(s^2+4s+13)}$. 14M OR

- b) By means of RH criterion determine the stability of the system represented by the characteristic equation $s^4 + 2s^3 + 8s^2 + 4s + 3 = 0$ 5M
- c) State the advantages of RH Stability criterion?

3M

UNIT-III

	UNIT-III	
5. a)	Show that Bode plots of a system with transfer function having many factors can be obtained by adding the Bode	
	plots of individual factors	7M
b)	Show that in Bode magnitude plot the slope corresponding to	
	a quadratic factor is -40 dB/dec.	7M
	OR	
6.	A certain system transfer function is	
	$G(s)H(s) = \frac{75(1+0.2s)}{s(s^2+16s+100)}$ using Bode plots, find gain margin	
	and phase margin. Comment on stability.	14M
	UNIT–IV	
7.	A unity feedback system has an open loop transfer function	
	$G(s) = \frac{K}{S(1+2S)}$ Design a suitable lag Compensator so that	
	phase margin is 40° and the steady state error for ramp input	
	is less than or equal to 0.2	14M
a)	OR	
8. a)	What are the deferent types of compensators available? Explain briefly.	7M
b)	Explain the deferent steps to be followed for the design of	
	lead compensator using Bode plot.	7M
c)	UNIT-V	
,	What are the properties of state transition matrix?	5M
b)	Given $\overset{\bullet}{X(t)} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$	
	Find the unit step response when $X(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	9M
	OR	
10.	Find the Unit step response for the following system with initial conditions	
	$ \overset{\bullet}{X(t)} = \begin{bmatrix} 0 & 1 \\ -6 & -2 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + u(t) \begin{bmatrix} 0 \\ 1 \end{bmatrix} $	
	$Y(t) = \begin{bmatrix} 3 & 0 \end{bmatrix} X(t)$	14M

END

	ŀ	Hall Ticket Number :			7
	C	code: 19A444T	R-	19	
	Ŭ	II B.Tech. II Semester Supplementary Examinations Februar	ry 2022	2	
		Field Theory and Transmission Lines			
		(Electronics and Communication Engineering) Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5×		3 Hours Marks))
		*****	Marks	со	Blooms Level
		UNIT–I			
1.	a)	Determine the electric flux density D everywhere of a sphere with radius <i>a</i> having uniform charge density $_0$ C/m ³ and sketch the D against the radius of the sphere.	10M	CO1	L3
	b)	Two point charges -4 μ C and 5 μ C are located at (2, -1, 3) and (0,4,-2), respectively. Find the potential at (1, 0, 1),	TOW	001	20
		assuming zero potential at infinity.	4M	CO1	L3
		OR			
2.	a)	A square plate described by -2 x 2, -2 y 2, z=0 carries a charge $12 y $ mC/m ² . Find the total charge on the plate and the electric field intensity at (0,0,10).	6M	CO1	L3
	b)	State and explain the Gauss's law? find the electric field intensity of an infinite sheet of uniform charge $_{s}$ C/m ² lying		.	
		on the x=0 plane.	8M	CO1	L1,L3
3.	a)	UNIT–II Explain the convection and conduction currents with suitable examples and equations?	6M	CO2	L2
	b)	If $J = (1/r^3)$ (2cos $a_r + sin a$) A/m ² , calculate the current passing through			
		 (i) A hemispherical shell of radius 20 cm, 0< < /2, 0 < Ø < 2 (ii) A spherical shell of radius 10 cm OR 	8M	CO2	L3
4.	a)	Explain the polarization in dielectrics?	8M	CO2	L2
	b)	A coil is made of 150 turns of copper wire wound on a cylindrical core. If the mean radius of the turns is 6.5 mm and the diameter of the wire is 0.4 mm, calculate the resistance	-		
		of the coil.	6M	CO2	L3
		UNIT–III			
5.	a)	Define magnetic scalar and vector potentials?	4M	CO3	L1

	b)	A charged particle of mass 1 kg and charge 2 C starts at the origin with zero initial velocity in a region where $E = 3a_z V/m$. Find the following:			
		(i) The force on the particle(ii) The time it takes to reach point P(0, 0, 12 m)			
		(iii) Its velocity and acceleration at P			
		(iv) Its kinetic energy at P	10M	CO3	L3
		OR			
6.	a)	Explain the inconsistency in ampere's law and write the final Maxwell equations	8M	CO3	L2
	b)	In free space, $E = 20 \cos(t - 50x) a_y V/m$. Calculate			
		(i) J _d (ii) H (iii)	6M	CO3	L3
-		UNIT-IV			
1.	a)	Define reflection and transmission coefficients and explain their properties for different mediums?	7M	CO4	L2
	b)	A plane wave travelling in air is normally incident on a material with $\epsilon_r=4$ and $\mu_r=1$. Find the reflection and transmission coefficients.	7M	CO4	L3
		OR			_
8.	a)	Derive the relation between E and H in a Uniform plane wave	7M	CO4	L3
	b)	State and prove Poynting theorem?	7M	CO4	L1,L2
9.	a)	At 60 MHz, the following characteristics of a lossy line are measured: $Z_0=50$, = 0.04 dB/m, = 2.5 rad/m. Calculate			
		R, L, C, and G of the transmission line.	8M	CO5	L3
	b)	Define Smith Chart and explain the various applications of			
		smith chart in Transmission line?	6M	CO5	L1
	_	OR			
10.		What are the applications of transmission lines?	5M	CO5	L1
	D)	A telephone line has $R = 30$ /km, $L = 100$ mH/km, $G = 0$,			
		and C = 20 μ F/km. At f = 1 kHz, obtain: (i) The characteristic impedance of the line			
		(ii) The propagation constant			
		(iii) The phase velocity	9M	CO5	L3
		END			

			R·	19	
		L II B.Tech. II Semester Supplementary Examinations Februa	ry 202	<u>ົ</u>	
		Life Sciences for Engineers	19 202	Ζ	
		(Common to EEE & ECE)			
		Max. Marks: 70	Time:		-
		Answer any five full questions by choosing one question from each unit (5:	x14 = 70) Mark	s)
			Marks	со	Bloc
			manto		Lev
١.	a)	UNIT–I What is chloroplast? Explain in detail about its structure and functions and also			
••	u)	draw the labeled diagram?	7M	1	
	b)	What is molecular taxonomy? Explain its role in the classification of living			
		organisms	7M	1	
		OR			
2.		Explain the differences between prokaryotes and eukaryotes?	14M	1	
		UNIT–II			
3.	a)	Describe the structure of hemoglobin and draw the labeled diagram?	7M	2	
	b)	What are antibodies and elaborate its structure with suitable diagram?	7M	2	
		OR			
1.		Write in detail about the structure and functions of nucleic acids?	14M	2	
5.		UNIT–III What is photosynthesis and explain the mechanism of photosynthesis?	14M	3	
).			1411	3	
5.	2)	Elaborate oxidative phosphorylation?	7M	3	
).	a) b)	Write the industrial applications of enzymes with suitable examples?	71VI 7M	3	
	0)	while the industrial applications of enzymes with suitable examples?	7 111	5	
		UNIT–IV			
7.		What is cell division? Elaborate mitosis and meiosis with suitable diagrams?	14M	4	
		OR			
3.	a)	What are the three laws of inheritance with examples?	7M	4	
	b)	What is RNA? Explain its structure and functions and draw labeled diagram?	7M	4	
		UNIT-V			
).	a)	Define transgenecis and explain the applications of transgenic microbes?	7M	5	
	b)	What are biosensors and biochips and add a note on their applications?	7M	5	
		OR			
).		What is recombinant DNA technology and explain various steps involved in			
		recombinant DNA technology?	14M	5	

Hal	I Ticket Number :								_			
										R-1	9	
Code: 19AC42T II B.Tech. II Semester Supplementary Examinations February 2022												
Numerical Methods and Transform Techniques												
Max	. Marks: 70		Com	imon to	EEE &	ECE)				Time: 3	Нош	^
	ver any five full que	estions by	/ choo	sing one	•	on fror	n ec	ich u	ınit (5x			
										Marks	со	Blooms Level
			L	JNIT–I								
1. a)	By using Regula - equation $x^4 - x - x^4$											
	approximations.	10 - 0			50111.0		00			,c 7M	1	3
b)	Solve $x^3 = 2x + 5$	for a pos	sitive r	oot by it	eration	methc	od.			7M	1	3
				OR								
2. a)	Determine $2 \times +$	of the fo	llowing	g table ι	ising Ne	wton'	s for	ward	formu	la		
	x 5	50 60	70	80						714		0
b)	,	05 225								7M	1	3
D)	The population of years	1921	1931		1951	1961	10)71				
	population		24	29	36	46		51				
	Estimate the incre			Į					961.	7M	1	3
			-									
			l	JNIT-II								
3. a)	Evaluate $\int_0^{\frac{5}{4}} \frac{a^x}{4x+5}$	by _{Trap}	ezoida	l rule us	sing 11 d	coordi	nate	s.		7M	2	5
b)	Evaluate $\int_{0}^{0} \frac{\overline{a}}{\sqrt{1-a^{2}}}$	- Trap	ezoida	n mpsol	11 ו ז's ³	2					-	_
,		$\overline{x}^{\overline{4}} dx$	using		s - ru					7M	2	5
4 a)	Listen 'oud	or ot	ərmine).1 ar	Ч	12	aiver	h			
ч. u)	Using ayl $dy = \frac{dy}{dy}$	ies, d		y at x	=	x =	0.2	giver	•			
	$\frac{dy}{dx} = \frac{1}{y^2 + x},$ By usi									7M	2	3
b)	By using R x , $\frac{dy}{dx} = 1 + \frac{-K \text{ thir}}{xy \text{ an}}$	ر r fo orde	ormula	determ	ine	25), w	/hen					
	$\frac{dy}{dx} = 1 + \frac{1}{xy} \text{ an}$	d dy(0) =	1?		5.00	-				7M	2	3
			U	INIT-III								
5. a)	Determine the Ta	aylor's se	eries to	o repres	ent the	functio	on - (-	$\frac{z^2}{z+2}$	$\frac{1}{z+3}$,	in		
	the region	z < 2					,		0000000050	7M	3	3
b)	[he region) the La Determine z^2 -			pansior	of the t	functio	on					
	$f(z) = \frac{z}{(z-1)(z-1)}$	-3)(z+2)	in tł	ne regi	ion 3 <	< z -	+ 2	< 5	5	7M	3	3
											0	0

Code: 19AC42T

6. a) Determine the poles and residues at each pole
$$\frac{xe^2}{(x-1)^3}$$
 7M 3 3
The poles and res
b) Evaluate $\oint_{X} \frac{4-3x}{x(x-1)(x-2)} \frac{ddes at each c}{dx - where}$ is the circle $|z|=3/2$ using
residue theorem. 7M 3 5
UNIT-IV
7. a) Determine the Fourier transform of f(x) defined by f(x) = $\{\bigcup_{i=1}^{i-1} |x_i| \le \alpha \\ \{\bigcup_{i=1}^{i-1} |x_i| \le \alpha \\ \{\bigcup_{i=1}^{i-1} |x_i| \le \alpha \\ \{\bigcup_{i=1}^{i-1} |x_i| \le \alpha \\ i\bigoplus_{i=1}^{i-1} |x_i| \le \alpha \\ i=1 \\ i\bigoplus_{i=1}^{i-1} |x_i| \le \alpha \\ i=1 \\ i\bigoplus_{i=1}^{i-1} |x_i| \le \alpha \\ i\bigoplus_{i=1}^{i-1} |x_i| \ge \alpha \\ i\bigoplus_{i=1}^{i-1} |x_i| \le \alpha \\ i\bigoplus_{i=1}^{i-1} |x_i| \le \alpha \\ i\bigoplus_{$

END

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES, RAJAMPET (AUTONOMOUS)

	II B.Tech I & II Semesters <u>CSE & ECE</u> Mandatory Course Supplementary Examina	ition										
	19AC37T, 19AC47T-Contitution of India											
	H.T. No:-											
	Date:-05-03-2022 Duration: 2Hr											
	Answer any five questions from the following. 5X20=100 Mai											
		Marks										
1	Define the term 'Constitution', and write a detailed note on the 'Preamble'	20M										
	of Indian Constitution.											
2	What are 'Fundamental Rights'? What is their importance according to	20M										
	Indian Constitution?											
3	Explain the powers and functions of the Supreme Court.											
4	How are the powers distributed between the Centre and State in Indian	20M										
	Constitution?											
5	Write in detail about the role of Chief Minister and Council of Ministers.	20M										
6	What is called 'Local Administration'? Explain about the Panchayat Raj	20M										
	System in India.											
7	Write about the roles and responsibilities of the Chief Election	20M										
	Commissioner of India.											
8	Write about the National Commission for Backward Classes.	20M										

	H	all Ticket Number :													_
													R-	19	
Code: 19A443T II B.Tech. II Semester Supplementary Examinations February 2022 Analog Communication Systems (Electronics and Communication Engineering)															
		ax. Marks: 70 swer any five full que	stions by	cho		g one	•	estior	n fror	n ec	ich u	unit (s		3 Hours) Marks	
					UNI	т_і							Marks	со	Blooms Level
1.	a)	Explain the filter	· metho				SC g	jene	erati	on			6M	CO1	L2
	b)	An audio baseb	and sig	nal	is d	escr	ibeo	d as							
		m (t) =30 sin (which is describ	ed as C	C (t)	= 6	5 siı	n (5	000	00t)				ər		
		(i) Draw the sp (ii) What is mo	dulatio	n ine	dex'	?		lodi	ulate	ed w	/ave) .			
		(iii) Find the si (iv) What is tra			-			of th	ne A	Μv	vave	? ?	8M	CO1	L2
		(,			OF								0		
2.	a)	With a neat of envelope detect		-			-				-	ole		CO1	L2
	b)	When carrier was signal with percent AM transmitter change if it is sint to the extent of a power if the	entage genera multane 30%? V	of i tes? eou: Vhat	moc ? Tc sly i : will	lulat wh mod l be	tion nat N ulat the	50% /alu ed t perc	6, h e w by a cent	ow ill tł notl age	muo nis ner sa\	ch th cowe sign ving	ne er al in		
		suppressed before		ismi	ssic									CO1	L2
3.	a)	Explain the Arm	strong	· · · · ·				gene	erati	on.			6M	CO2	L3
	b)	A single tone FM	A signa	l is g	give	n by	/								
		$s(t) = 10\cos($	16 <i>f</i> ×	10^6	⁵ t +	-20	sin	2 <i>f</i>	$\times 1$	(0^{3})					
		Find the model deviation, carrie signal.	dulatior er frequ		су,	and			Ŭ			ienc e F	M	CO2	L3
		–			OF			-				. –			
4.	a)	Explain with su signal may be g		-	ram	, ho	w tl	ne M	Narr	ow	ban	id Fi		CO2	L3

b) A certain sinusoid at a frequency fm Hz is used as the modulating signal in both a conventional AM system and a FM system. When modulated. The peak frequency deviation of the FM system is set to three times the bandwidth of the AM system. The magnitudes of those sidebands spaced at ± fm Hz from the carrier in both systems are equal, and the total average powers are equal in both systems. Determine i) Modulation index of the FM system ii) Modulation index of the AM system. 8M CO2 L3 UNIT-III 5. a) Discuss the role of pre emphasis and de-emphasis in commercial FM 7M CO3 L5 b) Calculate the SNR for SSB-SC signal. Consider white input noise 7M CO3 L5 OR 6. a) Compare AM and FM by considering noise. 6M CO3 L5 b) Give the output power appearing at the output of an RC low pass filter of cutoff frequency 'fc' when white noise of PSD N0/2 is input to it. 8M CO3 L5 UNIT-IV 7. a) With suitable block diagram explain Super-heterodyne receiver. 10M CO4 L1 b) List out the ideal characteristics of a receiver. 4M CO4 L1 OR 7M CO4 L1 8. a) Explain TRF receiver. b) With neat sketch explain Variable reactance type FM 7M CO4 L1 transmitter UNIT-V 9. a) With neat sketched, explain briefly the basic principle of FDM. 7M CO5 L4 b) Describe with suitable method of generation of PWM and PPM signal. 7M CO5 L4 OR 10. a) Explain how double polarity PAM is different from single polarity PAM. Briefly explain the generation of double polarity PAM. 7M CO5 L4 b) Explain how an audio signal can be sent using TDM. 7M CO5 L4

Code: 19A443T