Hall Ticket Number :

Code: 19AC44T

R-19

|| B.Tech. II Semester Supplementary Examinations April 2023

Life Sciences for Engineers

(Common to EEE \& ECE)

Time: 3 Hours
Max. Marks: 70

UNIT-I

1. a) Describe is Nucleus? Write their structure and important functions and draw
the labelled diagram?
b) Describe is mitochondrion? Write their structure and important functions and
draw the labelled diagram?

OR

2. a) Describe is Endoplasmic reticulum? Write their structure and important functions and draw the labelled diagram?
b) Explain the kingdom of Animalia?
UNIT-II
3. Describe the structure of DNA \& RNA? 14M

OR
4. Define the proteins? Write the structure and functions of proteins? 14 M

UNIT-III

5. a) Explain the Oxidative phosphorylation? 7M
b) What is neuron? Write their structure with draw the labelled diagram?

7M

OR

6. Explain the reaction of Electron Transport Chain? 14M

UNIT-IV

7. a) Briefly describe the transcription and translation?
b) Write the types of cell division and signifience of cell division? 7M

OR
8. a) Explain Mendel dihybrid cross experiment? 7M
b) Describe the sequential steps in the replication of DNA? 7M

UNIT-V

9. a) Explain the Importance of DNA Cloning? 7M
b) Discuss the application of Recombinant DNA Technology? 7M

OR
10. a) Describe the types of Biosensors? 7M
b) Write short notes on restriction enzymes? 7M

Code: 19AC42T

I| B.Tech. II Semester Supplementary Examinations April 2023

Numerical Methods and Transform Techniques

(Common to EEE \&ECE)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. Find the real root of $x e^{x}-\cos x=0$ using Bisection Method

Marks CO BL

OR
2. a) Find the real root of $\cos x=x e^{x}$ using False position Method

7M CO1
L3
b) Construct Newton's forward interpolating polynomial for the following data.

x	4	6	8	10
y	1	3	8	16

7M CO1
L3
UNIT-II
3. a) Obtain $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $\mathrm{x}=1.2$ from the following data

x	1	1.2	1.4	1.6	1.8	2	2.2
y	2.7183	3.3201	4.1552	4.9530	6.0496	7.3891	9.0250

b) Use Runge Kutta method to find y at $\mathrm{x}=0.1$ given that $\frac{d y}{d x}=x+y$ and $\mathrm{y}=1$ when $\mathrm{x}=0$

7M CO2
OR
4. Given $\frac{d y}{d x}=x^{2}+y, \quad y(0)=1$. Determine $\mathrm{y}(0.02), \mathrm{y}(0.04), \mathrm{y}(0.06)$ by Modified Euler's method.

14M CO2

UNIT-III

5. a) Expand $f(z)=\frac{1}{z^{2}-3 z+2}$ in the region i) $0<|z-1|<1$, ii) $1<|z|<2$

7M CO3 L2
b) Evaluate $\oint_{c} \frac{d z}{\left(z^{2}+4\right)^{2}}$ where $c:|z-i|=2$ using Cauchy Residue theorem.

OR
6. a) Find the Talor's series expansion of coshz about $z=\pi i$

7M CO3 L4
b) Determine the poles and residues at each pole of the function $f(z)=\frac{z+1}{z^{2}(z-2)}$

7M CO3 L3

UNIT-IV

7. a) Using Fourier integral, show that $e^{-a x}=\frac{2 a}{\pi} \int_{0}^{\infty} \frac{\cos \lambda x}{\lambda^{2}+a^{2}} d \lambda$

7M CO4 L3
b) Find the Fourier transform of $f(x)=\left\{\begin{array}{l}1,|x|<1 \\ 0,|x|>1\end{array}\right.$. and hence show that $\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}$

7M CO4 L1
OR
8. Find the Fourier sine transform of $e^{-|x|}$

14M CO4
L1

UNIT-V

9. If $f(z)=\frac{2 z^{2}+3 z+4}{(z-3)^{3}},|z|>3$ then find the values of $\mathrm{f}(1), \mathrm{f}(2), \mathrm{f}(3)$.
$14 \mathrm{M} \mathrm{CO5}$
L1
OR
10. Find $Z^{-1}\left(\frac{z}{(z-1)\left(z^{2}+1\right)}\right)$

Hall Ticket Number :

R-19

Code: 19A443T

|| B.Tech. || Semester Supplementary Examinations April 2023

Analog Communication Systems

(Electronics and Communication Engineering)
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$

UNIT-I

1. a) Summarize about the Elements of communication system

7M 15
b) Recall about the Need for modulation.

7M 12
2. a) Show that the efficiency of Amplitude Modulation is 33.3%.

7M 13
b) A Broadcast AM transmitter radiates 50 KW of carrier power, what will be the radiated power at 85% of modulation and also find total sideband power?

7M 14

UNIT-II

3. a) Explain demodulation of FM using first order PLL?

7M 22
b) Describe the frequency spectrum of WBFM with required expressions.

7M 22

OR

4. a) Discuss about the direct method of $F M$ generation with neat sketches? $7 \mathrm{CM} \quad 2$
b) The FM signal has a sinusoidal modulation frequency 20 KHz and a modulation index $\beta=4$. Find the transmission bandwidth of FM using Carson's rule.

7M 23
UNIT-III
5. a) Recall the noise performance of $A M$ systems
$\begin{array}{lll}7 \mathrm{M} & 3 & 1\end{array}$
b) Discuss about the noise in Angle Modulation System and its SNR Calculation. $7 \mathrm{7M} \quad 3 \quad 2$

OR
6. a) Explain the noise performance of AM system.

7M $3 \quad 2$
b) Explain about the threshold effects in FM system?

7M $3 \quad 2$

UNIT-IV

7. a) Analyze AM transmitters with modulation at high carrier power level.

7M $4 \quad 4$
b) Discuss different alignment and tracking techniques in the radio receivers?

7M 42
8. a) Explain about the working principle of FM Receiver.

7M 42
b) List out the carrier frequency requirements in a radio transmitter.

UNIT-V

9. a) Discuss about the generation of double polarity PAM and its generation.
b) Explain about the concept of PPM signal generation.

6M $5 \quad 2$

OR
10. a) Discuss about Frequency Division Multiplexing
b) Explain the generation of PPM signal.

8M $5 \quad 2$
6M 52
\square
Hall Ticket Number :

Code: 19A441T

R-19

II B.Tech. II Semester Supplementary Examinations April 2023
 Analog IC Applications
 (Electronics and Communication Engineering)

Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. Discuss the DC characteristics of an Op Amp.

OR

2. a) Explain the power supply connections of op-amp.
b) Define IC and list the applications of ICs.
Marks CO
3. Discuss the DC characteristics of an Op Amp.
4. | URIT-I |
| :--- |
| 2. Explain the power supply connections of op-amp. |
| b) Define IC and list the applications of ICs. |
| UNIT-II |
5. a) Design an adder circuit using Op-Amp to get output voltage $\mathrm{V}_{0}=\left(0.1 \mathrm{~V}_{1}+\mathrm{V}_{2}+10 \mathrm{~V}_{3}\right)$. Consider $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}$ are input voltages.
b) Illustrate the operation of non-inverting summer circuit using IC 741 .
7 M CO2 L6
OR
6. a) Discuss the operation of basic differentiator circuit using op-amp
7M CO2 L2
b) Consider the lossy integrator with components $R_{1}=10 \mathrm{~K}, \mathrm{R}_{\mathrm{F}}=100 \mathrm{~K}$, $\mathrm{C}_{\mathrm{F}}=10 \mathrm{nF}$. Determine the lower frequency limit of integrator.
7M CO2 L3

UNIT-III

5. a) Discuss the operation of Log Amplifier.
b) Demonstrate the operation of Precision Full-wave Rectifier.
7 M CO3 L2

OR

6. a) Explain how astable multivibrator can be used as Square wave generator.
b) Design an astable multivibrator for output frequency of 1 KHz

UNIT-IV

7. a) Draw and Explain the operation of Schmitt trigger using IC555.
7 M CO4 L2
b) Demonstrate how a PLL can be used as Frequency Multiplier.
7 M CO4 L3

OR

8. Illustrate the operation of monostable multivibrator circuit using IC 555 and derive the expression for time period
14M CO4 L3

UNIT-V

9. a) Illustrate the operation of weighted resistor DAC.
b) Discuss the operation of Servo tracking ADC.
7 M CO5 L3
7 M CO5 L2

OR

10. Discuss the drawbacks of R-2R ladder DAC and explain the operation of Inverted R-2R DAC.

Hall Ticket Number :

R-19

Code: 19A442T
II B.Tech. II Semester Supplementary Examinations April 2023
Control Systems
(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) For the mechanical system given below write differential equations and find the transfer function

b) Compare open loop and closed loop control systems

OR

2. a) Explain the feedback characteristics of closed loop control system

7M CO1
L2
b) Define closed loop control systems with two examples

7M CO1

UNIT-II

3. For servomechanisms with open loop transfer function given below explain what type of input signal give rise to a constant steady state error and calculate their values a) $G(s)=20(s+2) / s(s+1)(s+3)$ b) $G(s)=10 /(s+2)(s+3)$ c) $G(s)=10 / s^{2}(s+1)(s+2)$

OR

4. a) Discuss about procedural steps to sketch root locus

7M CO3
b) Find the breakaway point and angle of departure of a unity feedback system has open loop transfer function $G(s)=K / s\left(s^{2}+4 s=13\right)$

7M CO3

UNIT-III

5. a) The open loop transfer function of a unity feedback system is given by $G(s)=1 / s^{2}(1+s)(1+2 s)$ Sketch the polar plot and determine the gain margin and phase margin

10M CO3
b) Distinguish between gain margin and phase margin $4 \mathrm{M} \quad \mathrm{CO} 3$

OR
6. Define the following terms
(i) Gain cross over frequency
(iii) Gain margin
(ii)Phase cross over frequency
(iv)Phase margin
14M CO3
L1

> UNIT-IV
7. A unity feedback system has an open loop transfer function $G(s)=K / s(1+2 s)$ Design a suitable lag compensator so that the phase margin is 40° and the steady state error for ramp input is less than or equal to 0.2

14M CO4

OR

8. a) Explain PID controller and discuss the effect on the behavior of the system

10M CO4
b) Define Integral Controller

4 M CO4

UNIT-V

9. Develop the state vector $x(t)$ for the state model

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
-12 & 2 / 3 \\
-36 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{c}
1 / 3 \\
1
\end{array}\right] u ;
$$

and the initial conditions are $X_{1}(0)=2, X_{2}(0)=1$
14M CO5
L6
10. a) Obtain the state model for the system represented by

$$
\frac{d^{3} y}{d t^{3}}+6 \frac{d^{2} y}{d t^{2}}+11 \frac{d y}{d t}+10 y=3 u(t)
$$

7M CO5
b) Determine the state transition matrix of the state matrix

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-1 & -2
\end{array}\right] .
$$

\square

Code: 19A444T

R-19

I| B.Tech. II Semester Supplementary Examinations April 2023

Field Theory and Transmission Lines

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
Marks CO BL
UNIT-I

1. a) Analyze the relation between E and V

7M CO1
L4
b) Recite divergence theorem

7M CO1
2. State Gauss law. What are the conditions required for setting up a Gaussian surface. Apply Gauss law to calculate electric field due to Infinite line Charge. 14M CO1 L2

UNIT-II

3. a) List and explain the steps to determine Resistance

7 M CO2 L2
b) Infer the formula for series resistance

7 M CO2 L4
OR
4. a) Differentiate between resistance and capacitance $7 \mathrm{M} \quad \mathrm{CO} 2 \quad \mathrm{~L} 3$
b) Write a short note on Convection current
$7 \mathrm{M} \mathrm{CO2}$ L2

UNIT-III

5. a) Derive Ampere Circuits Law with related equations 7M CO3 L3
b) Write the applications of Amperes circuits law
$7 \mathrm{M} \mathrm{CO3} \mathrm{L2}$

OR

6. a) Discuss on Motional EMF

7 M CO3 L2
b) Summarize Maxwell's equations for Static EM fields

7 M CO3 L2

UNIT-IV

7. a) Discuss about pointing theorem and Poynting vector. 7M CO4 L2
b) calculate the α and β equations in wave propagation

7 M CO4 L3
OR
8. a) Explain and derive the characteristics of wave propagation in free space. $7 \mathrm{M} \quad \mathrm{CO} 4 \quad \mathrm{~L} 2$
b) Compare between lossy and lossless wave propagation

7M CO4 L2

UNIT-V

9. a) Outline Propagation Constant in transmission lines
$7 \mathrm{M} \mathrm{CO5}$
b) Calculate the characteristic impedance by using the following parameters of the line
$\mathrm{R}=65 \mathrm{ohms} / \mathrm{km} \quad \mathrm{L}=1.6 \mathrm{mH} / \mathrm{km} \quad \mathrm{C}=0.1 \quad \mathrm{~F} / \mathrm{km} \quad \mathrm{G}=2.25 \quad / \mathrm{km}$

OR

10. a) Explain the applications of transmission lines.
b) What is the relationship between primary constants and secondary constants of a transmission line?

7M CO5 L3

7M CO5 L2

7M CO5 L2

