	На	Il Ticket Number :	
	Cod	de: 19AC44T	-19
		II B.Tech. II Semester Supplementary Examinations April 2023	
		Life Sciences for Engineers	
		(Common to EEE & ECE)	0.11
		Time: swer any five full questions by choosing one question from each unit (5x14 = 7 ********	3 Hours 0 Marks)
		UNIT–I	Marks
1.	a)	Describe is Nucleus? Write their structure and important functions and draw the labelled diagram?	7M
	b)	Describe is mitochondrion? Write their structure and important functions and draw the labelled diagram?	7M
		OR	
2.	a)	Describe is Endoplasmic reticulum? Write their structure and important	714
	b)	functions and draw the labelled diagram? Explain the kingdom of Animalia?	7M 7M
	b)		7 101
		UNIT–II	
3.		Describe the structure of DNA & RNA?	14M
		OR	
4.		Define the proteins? Write the structure and functions of proteins?	14M
		UNIT–III	
5.	,	Explain the Oxidative phosphorylation?	7M
	b)	What is neuron? Write their structure with draw the labelled diagram?	7M
6.		OR Explain the reaction of Electron Transport Chain?	14M
0.			14101
		UNIT-IV	
7.	a)	Briefly describe the transcription and translation?	7M
	b)	Write the types of cell division and signifience of cell division?	7M
		OR	
8.	a)	Explain Mendel dihybrid cross experiment?	7M
	b)	Describe the sequential steps in the replication of DNA?	7M
•	、		
9.	a) ⊾)	Explain the Importance of DNA Cloning?	7M
	b)	Discuss the application of Recombinant DNA Technology? OR	7M
10.	a)	Describe the types of Biosensors?	7M
	b)	Write short notes on restriction enzymes?	7M
	,	***	

	: 19AC42T	R-19	
oue	II B.Tech. II Semester Supplementary Examinations April 20	23	
	Numerical Methods and Transform Techniques		
Ma	(Common to EEE &ECE) x. Marks: 70 Tir	ne: 3 F	lours
	wer any five full questions by choosing one question from each unit (5x14		
	*****	Marks	со
	UNIT–I		
	Find the real root of $xe^x - \cos x = 0$ using Bisection Method	14M	CO1
、	OR		
a)	Find the real root of $\cos x = xe^x$ using False position Method	7M	CO1
b)	Construct Newton's forward interpolating polynomial for the following data.x46810		
	x 4 6 8 10 y 1 3 8 16	7M	CO1
	UNIT–II		
a)	Obtain $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x=1.2 from the following data		
a)			
	x11.21.41.61.822.2y2.71833.32014.15524.95306.04967.38919.0250		<u> </u>
L)		7M	CO2
b)	Use Runge Kutta method to find y at x=0.1 given that $\frac{dy}{dx} = x + y$ and y=1		
	when x=0	7M	CO2
	OR		
	Given $\frac{dy}{dx} = x^2 + y$, $y(0) = 1$. Determine $y(0.02)$, $y(0.04)$, $y(0.06)$ by		
	Modified Euler's method.	14M	CO2
	UNIT-III		
a)	Expand $f(z) = \frac{1}{z^2 - 3z + 2}$ in the region i) $0 < z - 1 < 1$, ii) $1 < z < 2$	7M	CO3
b)	Evaluate $\oint \frac{dz}{(z^2+4)^2}$ where $c: z-i = 2$ using Cauchy Residue theorem.		
		7M	CO3
a)	OR Find the Talor's series expansion of coshz about $z = fi$	7M	CO3
	Determine the poles and residues at each pole of the		000
	function $f(z) = \frac{z+1}{z^2(z-2)}$		
		7M	CO3
	UNIT-IV		
a)	Using Fourier integral, show that $e^{-ax} = \frac{2a}{f} \int_{a}^{\infty} \frac{\cos x}{x^2 + a^2} d$	714	CO4
	5 0 5		CO4
b)	Find the Fourier transform of $f(x) = \begin{cases} 1, x < 1 \\ 0, x > 1 \end{cases}$ and hence show		
	that $\int_{-\infty}^{\infty} \frac{\sin x}{x} dx = \frac{f}{2}$		
	$\int_{0}^{1} x = 2$	7M	CO4
	OR		
	Find the Fourier sine transform of $e^{- x }$	14M	CO4
	$\mathbf{UNIT} - \mathbf{V}$		
	If $f(z) = \frac{2z^2 + 3z + 4}{(z-3)^3}$, $ z > 3$ then find the values of f(1), f(2), f(3).	4 4 8 4	CO5
	OR	14M	
	Find $Z^{-1}\left(\frac{z}{(z-1)(z^2+1)}\right)$		

_	<u> </u>		-19									
		le: 19A443T Il B.Tech. Il Semester Supplementary Examinations April 2023										
		Analog Communication Systems										
		(Electronics and Communication Engineering)										
	Mc		3 Hou	Jrs								
	Ans	swer any five full questions by choosing one question from each unit (5x14 = 70) Mark	s)								
			Marks	со								
		UNIT–I										
1.	a)	Summarize about the Elements of communication system	7M	1								
	b)	Recall about the Need for modulation.	7M	1								
_		OR										
2.	a)	Show that the efficiency of Amplitude Modulation is 33.3%.	7M	1								
	b)	A Broadcast AM transmitter radiates 50KW of carrier power, what will be the radiated power at 85% of modulation and also find total sideband power?	7M	1								
		radiated power at 65% of modulation and also find total sideband power?	7 111	1								
		UNIT–II										
3.	a)	Explain demodulation of FM using first order PLL?	7M	2								
	b)	Describe the frequency spectrum of WBFM with required expressions.	7M	2								
		OR	7M	2								
1.	a)	, C										
	b)	The FM signal has a sinusoidal modulation frequency 20KHz and a modulation	714	2								
		index =4. Find the transmission bandwidth of FM using Carson's rule.	7M	2								
		UNIT–III										
5.	a)	Recall the noise performance of AM systems	7M	3								
	b)	Discuss about the noise in Angle Modulation System and its SNR Calculation.	7M	3								
		OR										
5.	a)	Explain the noise performance of AM system.	7M	3								
	b)	Explain about the threshold effects in FM system?	7M	3								
		UNIT–IV										
7.	a)	Analyze AM transmitters with modulation at high carrier power level.	7M	4								
	b)	Discuss different alignment and tracking techniques in the radio receivers?	7M	4								
		OR										
3.	a)	Explain about the working principle of FM Receiver.	7M	4								
	b)	List out the carrier frequency requirements in a radio transmitter.	7M	4								
		UNIT-V										
Э.	a)	Discuss about the generation of double polarity PAM and its generation.	6M	5								
۶.	a) b)	Explain about the concept of PPM signal generation.	8M	5								
	5)	OR		5								
).	a)	Discuss about Frequency Division Multiplexing	8M	5								
	b)	Explain the generation of PPM signal.	6M	5								
		***	0.01	0								

	F	fall Ticket Number :			
	C	ode: 19A441T	R-19		
	C	II B.Tech. II Semester Supplementary Examinations April 2023			
		Analog IC Applications			
		(Electronics and Communication Engineering)			
	٨		e: 3 Ho	Urs	
	A	Answer any five full questions by choosing one question from each unit (5x14 = 7 *********	70 Mar	ks)	
			Marks	со	В
		UNIT–I			
1.		Discuss the DC characteristics of an Op Amp.	14M	CO1	L
		OR			
2. :	a)	Explain the power supply connections of op-amp.	7M	CO1	L
	b)	Define IC and list the applications of ICs.	7M	CO1	L
		UNIT–II			
3. a	a)	Design an adder circuit using Op-Amp to get output voltage			
		$V_0=(0.1V_1+V_2+10V_3)$. Consider V_1 , V_2 , V_3 are input voltages.	7M	CO2	L
I	b)	Illustrate the operation of non-inverting summer circuit using IC 741.	7M	CO2	L
		OR			
4. a	a)	Discuss the operation of basic differentiator circuit using op-amp	7M	CO2	L
I	b)	Consider the lossy integrator with components $R_1{=}10~K$, $R_F{=}100~K$,			
		C_{F} =10nF. Determine the lower frequency limit of integrator.	7M	CO2	Ľ
		UNIT–III			
5. a	a)	Discuss the operation of Log Amplifier.	7M	CO3	L
I	b)	Demonstrate the operation of Precision Full-wave Rectifier.	7M	CO3	L
		OR			
6. a	a)	Explain how astable multivibrator can be used as Square wave generator.	9M	CO3	L
I	b)	Design an astable multivibrator for output frequency of 1KHz	5M	CO3	L
		UNIT–IV			
7. :	a)	Draw and Explain the operation of Schmitt trigger using IC555.	7M	CO4	L
	b)	Demonstrate how a PLL can be used as Frequency Multiplier.	7M	CO4	L
	,	OR			
8.		Illustrate the operation of monostable multivibrator circuit using IC 555 and			
		derive the expression for time period	14M	CO4	L
		UNIT–V			
9. a	a)	Illustrate the operation of weighted resistor DAC.	7M	CO5	L
	b)	Discuss the operation of Servo tracking ADC.	7M	CO5	L
	- /	OR		200	_
10.		Discuss the drawbacks of R-2R ladder DAC and explain the operation of			
2-		Inverted R-2R DAC.	14M	CO5	L

		Ticket Number :	R-19		
•		II B.Tech. II Semester Supplementary Examinations April 202	23		
		Control Systems			
	Mc	(Electronics and Communication Engineering) ax. Marks: 70	ne:3+	lours	
		swer any five full questions by choosing one question from each unit (5x14			
		*****	Marks	со	BL
		UNIT–I			
1.	a)	For the mechanical system given below write differential equations and find			
		the transfer function			
		M_1 M_2 $f(t)$			
		minimini			
		¹ B ₁ ¹ B ₂	8M	CO1	Ľ
	b)	Compare open loop and closed loop control systems OR	6M	CO1	Ľ
2.	a)	Explain the feedback characteristics of closed loop control system	7M	CO1	Lź
	b)	Define closed loop control systems with two examples	7M	CO1	Ľ
		UNIT–II			
3.		For servomechanisms with open loop transfer function given below explain			
		what type of input signal give rise to a constant steady state error and calculate their values a) $G(s)=20(s+2)/s(s+1)(s+3)$ b) $G(s)=10/(s+2)(s+3)$			
		c) $G(s)=10/s^2(s+1)(s+2)$	14M	CO2	L
		OR			
4.	a)		7M	CO3	Ľ
	b)	Find the breakaway point and angle of departure of a unity feedback system has open loop transfer function $G(s) = K/s(s^2+4s=13)$	7M	CO3	13
			7101	000	L.
5.	a)	The open loop transfer function of a unity feedback system is given by			
		$G(s) = 1/s^2(1+s)(1+2s)$ Sketch the polar plot and determine the gain margin			
	ь)	and phase margin	10M	CO3	
	b)	Distinguish between gain margin and phase margin OR	4M	CO3	Ľ
6.		Define the following terms			
		(i) Gain cross over frequency (ii) Phase cross over frequency			
		(iii) Gain margin (iv)Phase margin	14M	CO3	Ľ
_					
7.		A unity feedback system has an open loop transfer function $G(s)=K/s(1+2s)$ Design a suitable lag compensator so that the phase margin is 40 ^o and the			
		steady state error for ramp input is less than or equal to 0.2	14M	CO4	Le
		OR			
8.	,	Explain PID controller and discuss the effect on the behavior of the system	10M	CO4	L2
	b)	Define Integral Controller	4M	CO4	Ľ
9.		UNIT-V Develop the state vector x(t) for the state model			
9.		A STATE OF A			
		$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -12 & 2/3 \\ -36 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1/3 \\ 1 \end{bmatrix} u;$			
		and the initial conditions are $X_1(0)=2$, $X_2(0)=1$	14M	CO5	L
10	a)	OR Obtain the state model for the system represented by			
10.	aj	$\frac{d^3y}{dt^3} + 6 \frac{d^2y}{dt^2} + 11 \frac{dy}{dt} + 10 y = 3 u(t).$			_
	۲		7M	CO5	Ľ
	(מ	Determine the state transition matrix of the state matrix $\begin{bmatrix} 0 & 1 \end{bmatrix}$			
		$A = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix}.$	714	COF	17
			<i>i</i> IVI	CO5	Ľ

Important Note: 1. On completing your answers. Compulsorily draw diagonal cross line on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and/or equations written eg. 32+8=40, will be treated as malpractice.

Page **1** of **1**

	На	III Ticket Number :]				
														R-19	>	
	Co	de: 19A444T II B.Tech. II S	emest	er Si	ממנ	lem	entai	γE	xan	nina	tion	is Apr	il 202	23		
			ield Tl					-								
		-	ctronic	s an	d C	omn	nunic	atic	n Ei	ngin	eerir	ng)				
100.		ax. Marks: 70 swer any five full que	stions b	by ch	oosii	-	ne qu *****	estic	on fr	om e	each	unit (ne: 3 H = 70 M		
2						UNIT	 I							Marks	СО	BL
1.	. a)	Analyze the relation	betwee	n E a	I		•							7M	CO1	L4
	b)	Recite divergence th												7M	CO1	L1
						OF	ł									
2.		State Gauss law. Wh surface. Apply Gauss					•			•	•			14M	CO1	L2
						UNIT	-11									
	,	List and explain the					sistar	ce						7M	CO2	L2
5	b)	Infer the formula for	series r	esist	ance									7M	CO2	L4
	-)					OF		_							000	
² 4.	,	Differentiate betwee				•	icitanc	e						7M 7M	CO2	L3
לממי	b)	Write a short note or	I CONVE	CUO		ent								7M	CO2	L2
5					I	JNIT-										
2 5. 8	,	Derive Ampere Circu					-	ons						7M	CO3	L3
	b)	Write the application	s of Am	pere	S CIR									7M	CO3	L2
	2)	Discuss on Motional				OF	K							7M	CO3	L2
· · · ·	. a) b)	Summarize Maxwell		tions	for S	Static	EM fi	elds							CO3	
2244	0)	Currinanze Maxwell	o cquu		i									7 101	000	
- - - - - -	2)	Discuss shout pointi			· · · · · ·	JNIT-								714	004	1.0
7.	. a) b)	Discuss about pointi calculate the and	ng theo equati				0							7M 7M	CO4 CO4	L2 L3
	0)		equali	0115 1	II wa	OR			1					7 111	004	LJ
2. Any revealing or ractinination, appeal to	. a)	Explain and derive tl	ne chara	acter	istics			ropa	agati	on in	free	space).	7M	CO4	L2
	b)	Compare between lo					-		-					7M	CO4	L2
)))			-					-								
<u>}</u> 9	. a)	Outline Propagation	Consta	nt in		NIT-Y		999						7M	CO5	
i U.	b)	Calculate the charac							follo	wind	ıpar	amete	rs of	7 101	000	
	- /	the line				,	. 3				, 1,					
		R =650hms/km L	= 1.6m	H/kn	n C	s = 0.	1 µF/k	m	G =	2.25	5µ /I	km			_	
														7M	CO5	L3
40	-)		and sta												005	
10.		Explain the applicati						00-	otor	to -	nd	0000-	dom	7M	CO5	L2
	b)	What is the relati constants of a transmi	•			pri	nary	COU	รเลก	115 2	шu	Secon	uary	7M	CO5	L2
						*	* *									