	ŀ	Hall Ticket Number :											·		7
	C	ode: 19A444T]]]	R-1	9	
	Ŭ	ll B.Tech. II Sen	nester S Field T l ectronic	heo	ry c	and	Trar	nsm	issio	on Li	ines	-	gust 202	2	
		Max. Marks: 70 Answer any five full qu				ng c		uesti		-			Time: 3 5x14 = 70 <i>1</i>		
													Marks	СО	Blooms Level
					UNIT										
1.	a)	Explain different type				-							7M	CO1	L2
	b)	Recall stokes theore	m and wr	ite its	s equ OF		า						7M	CO1	L1
2.	a)	Examine on Energy of	densitv		•	•							7M	CO1	L3
	b)	Describe electric pote	•										7M	CO1	L2
		·			UNIT	'-II									
3.	a)	Explain the propertie	s of mate	rials	and	Diele	ectric	Con	stan	t & st	rengt	h	7M	CO2	L2
	b)	Identify different type	s of mate	erials		•	ain						7M	CO2	L1
1		List and syntain the s	topo to d	otorr	OF	-	ioton	20					7M	CO2	L2
4.	a) b)	List and explain the s Infer the formula for s	•			Res	Istant	Je						CO2	LZ L4
	D)						7						7 111	002	L4
5.	a)	List and explain Max	well's Equ	I			atic E	M Fie	elds				7M	CO3	L1
	b)	Discuss the application	•							ase o	f infi	nite Io	ng		
		coaxial transmission	line										7M	CO3	L3
_					OF	R									
6.		Demonstrate on Trar	sformer										14M	CO3	L3
7	-)										P . I	1	71.4	004	
7.	a) Þ	Write equations of		•										CO4	L2
	b)	Determine the exp constant in a good co		tor	Intrir	ISIC	impe	ender	nce	and	pro	pagati		CO4	L3
					OF	R									
8.		A lossy dielectric has radian frequency . I the dielectric has the	f at that f	requ	ency	the	plane	e wav	/e pr	opag	ation	•	gh		
		A/m . Find E and . [Determine		skin UNIT		th and	d wav	ve po	olariz	ation		14M	CO4	L4
9.	a)	Discuss on the Phase	e and Gro	oup \	/eloc	cities							7M	CO5	L2
	b)	Derive the Expressio	ns for Ch	arac			npeda	ance					7M	CO5	L3
40	- 1		(P		OF	K								00-	
10.		Write a note on Infini		•	tS									CO5	L2
	b)	Obtain input impedar	ice relatio	ons		*	**						7M	CO5	L3

С	ode: 19AC44T	R-1	9	
	II B.Tech. II Semester Supplementary Examinations July/Augu	st 202	2	
	Life Sciences for Engineers			
	(Common to EEE & ECE)			
	T Answer any five full questions by choosing one question from each unit (5x1).	ime: 3 4 = 70 <i>I</i>		
,		1 /0/		
		Marks	со	Blooms Level
	UNIT–I			
1. a)	Describe is Nucleus? Write their structure and important functions and draw			
	the labelled diagram?	7M	CO1	2
b)	Write about the Characteristics of Cells?	7M	CO1	1
	OR			
2.	Explain the comparison of biological organisms with manmade systems?	14M	CO1	2
•	UNIT-II			
3.	Describe are the Carbohydrates? Write the types and functions of	14M	CO2	2
	carbohydrates?	1411	002	Z
4.	Explain the Hemoglobin and Write the functions of Hemoglobin?	14M	CO2	2
т.			002	2
	UNIT-III			
5.	Explain the reaction of Krebs/TCA cycle?	14M	CO3	2
	OR			
6.	Describe the structure of neuron and types? Give an account of the			
	Synaptic and neuromuscular junctions?	14M	CO3	4
	UNIT–IV			
7.	Define the genetics? Explain the Mendel's Laws?	14M	C04	1
	OR			
8.	Describe the meiosis cell division process?	14M	C04	2
0			005	~
9.	Describe the Recombinant Vaccines?	14M	CO5	2
	OR			
0.	Explain the various process of recombinant DNA technology?	4 4 4 4	CO5	2

	Hall Ticket Number :			1
	Code: 19AC42T	R-1	9	
	II B.Tech. II Semester Supplementary Examinations	July/August 202	2	
	Numerical Methods and Transform Tec			
	(Common to EEE & ECE)	- ; 0		
	Max. Marks: 70 Answer any five full questions by choosing one question from ear	Time: 3		
		CH UHII (3X14 – 70 ľ	MUIKS J	
		Marks	СО	Blooms Level
	UNIT–I			
1.	Find the real root of $x^3 - x - 1 = 0$ using Bisection Method OR	14M	CO1	L3
2. a)) Find the real root of $x^3 - 2x - 5 = 0$ using Bisection Method	7M	CO1	L3
b)				
		5	CO1	1.2
	f(x) 2 3 12 14	47 7M	COT	L3
	6			
3.	Evaluate $\int_{0}^{0} \frac{1}{1+x^2} dx$ using i)Trapezoidal rule ii)Simpson's 1/3 r	ule,		
	0		000	1.4
	iii) Simpson's 3/8 rule and compare with exact solution OR	14M	CO2	L4
	1.4			
4. a	a) Compute the value of $\int (\sin x - \log x + e^x) dx$ using Simpson's 3/8	rule	000	
E)		7M	CO2	L3
b)		0) = 0. 7M	CO2	L3
	UNIT-III			
5.	Use Cauchy Residue theorem to find $\oint_c \frac{4-3z}{z(z-1)(z-2)} dz$, where	e 'c' is the		
	circle $ z = \frac{3}{2}$			
	2	14M	CO3	L3
0	OR 1			
6.	Find Taylor's expansion of $f(z) = \frac{1}{(z+1)^2}$ about the point z=-i	14M	CO3	L4
		1410	005	L4
7.	Find the Fourier transform of $f(x) = \begin{cases} 1 - x^2, x \le 1\\ 0, x > 1 \end{cases}$. Hence	evaluate		
	\sim reconstruction r \sim r			
	$\int_{0}^{\infty} \frac{x \cos x - \sin x}{x^3} \cos \frac{x}{2} dx$			
		14M	CO4	L2
8.	Find the Fourier cosine transform of e^{-x^2}	14M	CO4	L1
		1410	004	LI
9.	Use Convolution theorem to evaluate $Z^{-1}\left(\frac{z^2}{(z-a)(z-b)}\right)$		00-	
	OR	14M	CO5	L3
40				
10.	If $U(z) = \frac{2z^2 + 5z + 14}{(z-1)^4}$ then evaluate u_2 and u_3	14M	CO5	L2
	***	1 - 1 (VI	000	

Page **1** of **1**

	ŀ	Hall Ticket Number :														1
	C	code: 19A443T											R	-19		
	C	II B.Tech. II Sen	nester Si	aau	lem	ento	ary E	Exar	ninc	atior	ns Ju	ly/Au	aust 20)22		
			Analo				•					<i>,,</i> - ,	0			
		-	ectronic	s an	d C	omn	nunio	catio	on E	ngin	eerir	ng)				
		Max. Marks: 70	lostions b	vch	oosi			iosti	on fr	om	hach	unit (5	Time:			
	Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)															
							٦						Mark	S	со	Blooms Level
					UNIT									_		_
1.	a)	Derive the expression		•									71		1	6
	b)	Describe the frequen	cy spectro	um o			rele	vant	expr	essic	ons.		71	M	1	2
C	\sim	Evoloin about balana	od ring m	odul	OR		to on	oroti	00.14	ith n		(otobor	s 71		1	1
۷.	a) b)	Explain about balanc Derive an expression	Ũ				•							VI	1	I
	0)	that max efficiency is		-	• •	u a	singi	5 101		vi siy	nai a		vv 7ľ	M	1	2
				· ·	UNIT	-11										
3.	a)	Discuss about the sp	ectral ana	alysis	s of s	inuso	bidal	FM	wave	?			7	N	2	2
	b)	The FM signal has						•	•			z and	а			
		modulation index is 2	, using C	arsoi			nd the	e tra	nsmi	ssion	BW		71	N	2	3
4	- >									,						
4.	a)	Explain principle of of FM signal.	operation	of E	salan	ced	slope	e-det	ecto	r tor	dete	cting tr	ne 71	И	2	2
	b)	The FM signal has	a sinus	soida	al m	odula	ation	frec	uen	cv 2	0KHz	z and		VI.	-	-
	,	•	=2.5. Fin						•	•						
		Carson's rule.					٦						7	N	2	3
_				1												
5.	a)	Derive an expression	•					•			,	000	71		3	6
	b)	Determine an expres	SION FOR TH	gure			ot cor	herer	nt rec	ceptio	on of	55B.	71	VI	3	3
6.	a)	Determine the expres	sion for f	iaure	OR of n		of an	ЕM	evet	am?			8	1	3	3
0.	b)	Discuss about thresh		-				1 101	3930	5111:			6		3	2
	0)	Discuss about thicsh			JNIT-		1						0	VI	U	2
7.	a)	Describe the block di	agram of				_ /ith n	eat s	sketc	hes.			8	M	4	2
	b)	List out the ideal chai	-										6	M	4	1
					OR	2										
8.	a)	Discuss about the rea	actance m	nodu	lated	FM	trans	mitte	er wit	th ne	at sk	etches.	7	N	4	2
	b)	Explain the working	• •	e AG	iC w	vith t	he n	nerits	s of	dela	yed	AGC a				
		compared with simple	e AGC.				٦						71	M	4	2
0	2)	Evalain about the bar			JNIT								0		~	0
9.	a) b)	Explain about the bas	• •		•					alo r	olori		18	VI	5	2
	b)	Explain how double Briefly explain the ge	•							Aic h	Julai I		vi. 61	M	5	2
		, ,			OR								2.		-	_
10.	a)	Outline about the ger	neration a	nd d	etect	ion c	of PV	/M w	ith n	eat s	ketch	nes.	71	N	5	4
	b)	Justify, how a PPM s	ignal can	be g	ener	ated	from	PW	M się	gnal?	I I		71	N	5	5
						*	**									

Hall Ticket Number :			
Code: 19A442T		R-19	
II B.Tech. II Semester Supplementary Examinati Control Systems		2022	
(Electronics and Communication Eng Max. Marks: 70 Answer any five full questions by choosing one question fror *********	Tim	ə: 3 Hour 70 Marks	-
	Ma	arks CO	Blooms Level
UNIT–I			
1. a) Classify various types of control systems		6M CO1	L2
 b) Find the transfer function of signal flow graph by using mason's gain formula 	given below		
-H ₂			
$R(s)$ G_1 G_2 G_3 G_4 G_6 1			
G			
	8	BM CO1	L1
OR Derive on evenesion for the transfer fun	ation of on		
2. Derive an expression for the transfer fun armature controlled DC servo motor		IM co1	L6
UNIT-II	·		LU
3. a) Define the following terms			
i. Absolute stability ii. Marginal stability iii. Condit	-	M coa	6 L2
 b) By means of RH criterion determine the sta system represented by the characteristic 	ic equation		
S ⁴ +2S ³ +8S ² +4S+3=0	-	7M CO2	2 L3
OR (1 a) Determine the range of K for stability of up	ity foodback		
4. a) Determine the range of K for stability of un system whose open loop transfer function is	ity leeuback		
G(s) = K/s(s+1)(s+2)	-	M coz	L3
b) Explain the RH Criterion to determine the sta	•	7 \ 4	
system UNIT-III		M co2	2 L2
5. a) A system has open loop pole and two closed I	oop poles in		
right half of s-plane. Show that Nyquist plot e (-1+j0) point once in clockwise direction	encircles the	7M coa	6 L1
b) Addition of poles to the open loop transfer func) LI
the closed loop stability of the system. Justify	y by Nyquist		
plots	-	M coa	6 L4
OR			

6.	a)	Sketch the bode plot for the following transfer function and determine the phase margin and gain margin			
		$G(s) = 75(1+0.2s) / s(s^2+16s+100)$	7M	CO3	L4
	b)	Describe the procedure for developing the Bode plot	7M	CO3	L2
	-	UNIT-IV			
7.	a)	Explain about compensation? What are the different types of compensators	7M	CO4	L2
	b)	List out the procedural steps to design lead compensator			
			7M	CO4	L1
		OR			
8.	a)	Distinguish the P,D and I controllers	7M	CO4	L4
	b)	Determine the transfer function lag compensator UNIT-V	7M	CO4	L3
9.	a)	Discuss the significance of state space analysis	7M	CO5	L2
	b)	Define the terms controllability and observability and write necessary conditions for verification of controllability and observability	7M	CO5	L1
		OR		000	
10.	a)	Distinguish between transfer function model and state			
10.	ω,	space model	7M	CO5	L4
	b)	Discuss about the properties of state transition matrix	7M	CO5	L2