Hall Ticket Number :

\square

Code: 19A444T

R-19

II B.Tech. II Semester Supplementary Examinations July/August 2022

Field Theory and Transmission Lines

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$

UNIT-I

1. a) Explain different types of coordinates systems
7M CO1
b) Recall stokes theorem and write its equation
7M CO1

OR

2. a) Examine on Energy density
7M CO1
b) Describe electric potential
7M CO1

UNIT-II

3. a) Explain the properties of materials and Dielectric Constant \& strength
7 M CO 2
b) Identify different types of materials and explain
7 M CO 2

OR

4. a) List and explain the steps to determine Resistance
7M CO2
b) Infer the formula for series resistance
7 M CO 2

UNIT-III

5. a) List and explain Maxwell's Equations for Static EM Fields
$7 \mathrm{M} \mathrm{CO3}$
b) Discuss the applications of Ampere circuits law in the case of infinite long coaxial transmission line

OR

6. Demonstrate on Transformer EMF
14M CO3

UNIT-IV

7. a) Write equations of α and β. Explain Planes waves in Lossless dielectrics
7M CO4
b) Determine the expression for intrinsic impendence and propagation constant in a good conductor.
7M CO4

OR

8. A lossy dielectric has an intrinsic impedance of $200 \mathrm{~L} 30^{\circ}$ at a particular radian frequency ω. If at that frequency the plane wave propagation through the dielectric has the magnetic field component $\mathbf{H}=10 e^{-\alpha x} \cos (\omega t-1 / 2 x) a_{y}$ A / m. Find E and α. Determine the skin depth and wave polarization. 14M CO4
9. a) Discuss on the Phase and Group Velocities
7M CO5
L2
b) Derive the Expressions for Characteristic Impedance
$7 \mathrm{M} \mathrm{CO5}$

OR

10. a) Write a note on Infinite line concepts
b) Obtain input impedance relations 7M CO5L2
11. a) Write a note on Infinite line concep
b) Obtain input impedance relations

[^0]

UNIT-V

VelocitiesHall Ticket Number :
R-19 R-19
Code: 19AC44TII B.Tech. II Semester Supplementary Examinations July/August 2022
Life Sciences for Engineers
(Common to EEE \& ECE)
Max. Marks: 70 Time: 3 HoursAnswer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)$* * * * * * * * *$

UNIT-I

1. a) Describe is Nucleus? Write their structure and important functions and draw the labelled diagram? 7M CO1
b) Write about the Characteristics of Cells? 7M CO1
OR
2. Explain the comparison of biological organisms with manmade systems? 14M CO1
UNIT-II
3. Describe are the Carbohydrates? Write the types and functions of carbohydrates? 14M CO2 2
OR4. Explain the Hemoglobin and Write the functions of Hemoglobin?14M CO2
UNIT-III
4. Explain the reaction of Krebs/TCA cycle?14M CO3
OR
5. Describe the structure of neuron and types? Give an account of the
6. Describe the structure of neuron and types? Give an account of theSynaptic and neuromuscular junctions?
14M CO3 4

14M CO3
UNIT-IV7. Define the genetics? Explain the Mendel's Laws?14M C04
OR
8. Describe the meiosis cell division process? 14M C04
UNIT-V
9. Describe the Recombinant Vaccines? 14M CO5 2
OR
10. Explain the various process of recombinant DNA technology?14M CO5 Synaptic and neuromuscular junctions?
UNIT-IV
7. Define the genetics? Explain the Mendel's Laws?
OR
8. Describe the meiosis cell division process?

Code: 19AC42T

|| B.Tech. II Semester Supplementary Examinations July/August 2022
Numerical Methods and Transform Techniques
(Common to EEE \& ECE)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
Marks CO

UNIT-I

1. Find the real root of $x^{3}-x-1=0$ using Bisection Method
2. a) Find the real root of $x^{3}-2 x-5=0$ using Bisection Method

7M CO1
b) Find $\mathrm{f}(3)$ using Lagrange's formula for the following data

x	0	1	2	5
$\mathrm{f}(\mathrm{x})$	2	3	12	147
		UNIT		

3. Evaluate $\int_{0}^{6} \frac{1}{1+x^{2}} d x$ using i)Trapezoidal rule ii)Simpson's $1 / 3$ rule,
iii) Simpson's $3 / 8$ rule and compare with exact solution

14M CO2

OR

4. a) Compute the value of $\int_{0.2}^{1.4}\left(\sin x-\log x+e^{x}\right) d x$ using Simpson's $3 / 8$ rule
b) Using Modified Euler's method, find $y(0.2)$ given $y^{\prime}=y+e^{x}, y(0)=0$.

UNIT-III

5. Use Cauchy Residue theorem to find $\oint_{c} \frac{4-3 z}{z(z-1)(z-2)} d z$, where ' c ' is the circle $|z|=\frac{3}{2}$
6. Find Taylor's expansion of $f(z)=\frac{1}{(z+1)^{2}}$ about the point $z=-i$

UNIT-IV

7. Find the Fourier transform of $f(x)=\left\{\begin{array}{l}1-x^{2},|x| \leq 1 \\ 0,|x|>1\end{array}\right.$. Hence evaluate $\int_{0}^{\infty} \frac{x \cos x-\sin x}{x^{3}} \cos \frac{x}{2} d x$

OR

8. Find the Fourier cosine transform of $e^{-x^{2}}$

UNIT-V

9. Use Convolution theorem to evaluate $Z^{-1}\left(\frac{z^{2}}{(z-a)(z-b)}\right)$

OR

10. If $U(z)=\frac{2 z^{2}+5 z+14}{(z-1)^{4}}$ then evaluate u_{2} and u_{3}
|| B.Tech. II Semester Supplementary Examinations July/August 2022

Analog Communication Systems
 (Electronics and Communication Engineering)

Max. Marks: 70
Answer any five full questions by choosing one question from each unit (5×14 = 70 Marks)

Marks CO
 UNIT-I

1. a) Derive the expressions of various power calculations involved in AM.
b) Describe the frequency spectrum of $A M$ with relevant expressions.
$7 \mathrm{M} \quad 1$

OR
2. a) Explain about balanced ring modulator and its operation with neat sketches

7M 1
b) Derive an expression for efficiency (η) of a single tone AM signal and show that max efficiency is 33.3% for $\mu=1$.

UNIT-II

3. a) Discuss about the spectral analysis of sinusoidal FM wave?

7M 2
b) The FM signal has a sinusoidal modulation frequency of 15 KHz and a modulation index is 2 , using Carson's rule find the transmission BW

7M 2

OR

4. a) Explain principle of operation of Balanced slope-detector for detecting the FM signal.

7M 2
b) The FM signal has a sinusoidal modulation frequency 20 KHz and a modulation index $\beta=2.5$. Find the transmission bandwidth of FM using Carson's rule.
7M 23

UNIT-III

5. a) Derive an expression for output SNR for DSB-SC system.

7M 3
b) Determine an expression for figure of merit of coherent reception of SSB.

7M
3
OR
6. a) Determine the expression for figure of merit of an FM system?

8M 3
b) Discuss about threshold effect in FM system.

6M 3
UNIT-IV
7. a) Describe the block diagram of FM receiver with neat sketches.

8M 4
b) List out the ideal characteristics of a receiver.

6M 4

OR

8. a) Discuss about the reactance modulated FM transmitter with neat sketches.

7M 4
b) Explain the working principle AGC with the merits of delayed AGC as compared with simple AGC.

7M 4

UNIT-V

9. a) Explain about the basic principle of operation of FDM.

8M 5
b) Explain how double polarity PAM is different from single polarity PAM. Briefly explain the generation of double polarity PAM.

6M 5
10. a) Outline about the generation and detection of PWM with neat sketches.

7M 5
b) Justify, how a PPM signal can be generated from PWM signal?

7M 5

Code: 19A442T

|| B.Tech. II Semester Supplementary Examinations July/August 2022

Control Systems

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Classify various types of control systems
$6 \mathrm{M} \mathrm{CO1}$
b) Find the transfer function of signal flow graph given below by using mason's gain formula

8M CO1 L1
OR
2. Derive an expression for the transfer function of an armature controlled DC servo motor
3. a) Define the following terms
i. Absolute stability ii. Marginal stability iii. Conditional stability 7M CO3
b) By means of RH criterion determine the stability of the system represented by the characteristic equation $S^{4}+2 S^{3}+8 S^{2}+4 S+3=0$

OR

4. a) Determine the range of K for stability of unity feedback system whose open loop transfer function is $G(s)=K / s(s+1)(s+2)$

7M CO2
b) Explain the RH Criterion to determine the stability of the system

7M CO2

UNIT-III

5. a) A system has open loop pole and two closed loop poles in right half of s-plane. Show that Nyquist plot encircles the $(-1+j 0)$ point once in clockwise direction

7M CO3
L1
b) Addition of poles to the open loop transfer function reduces the closed loop stability of the system. Justify by Nyquist plots

7M CO3
6. a) Sketch the bode plot for the following transfer function and determine the phase margin and gain margin
$\mathrm{G}(\mathrm{s})=75(1+0.2 \mathrm{~s}) / \mathrm{s}\left(\mathrm{s}^{2}+16 \mathrm{~s}+100\right)$ 7M CO3 L4
b) Describe the procedure for developing the Bode plot $7 \mathrm{M} \mathrm{CO3}$ L2
UNIT-IV
7. a) Explain about compensation? What are the different types of compensators 7M CO4 L2
b) List out the procedural steps to design lead compensator
OR8. a) Distinguish the P, D and I controllers7M CO4L4
b) Determine the transfer function lag compensator 7M CO4 L3
UNIT-V
9. a) Discuss the significance of state space analysis 7M CO5 L2
b) Define the terms controllability and observability and writenecessary conditions for verification of controllability andobservability
OR
10. a) Distinguish between transfer function model and statespace model7M Co5L4
b) Discuss about the properties of state transition matrix 7M CO5 L2

[^0]:

